• Title/Summary/Keyword: binaural interaction

Search Result 2, Processing Time 0.018 seconds

Binaural Interaction Component in Auditory Brainstem Responses with Asymmetric Simultaneous Acoustic Stimulation (비대칭 음 강도 양이 동시 자극 청성뇌간유발반응의 양이간섭치)

  • Heo, S.D.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.2
    • /
    • pp.95-99
    • /
    • 2014
  • Binaural interaction can recognize the same intensity sound by stimulating two ears alternatively, and it can be record auditory brainstem responses (ABR). However, We needs to be researched about binaural interaction in asymmetric binaural acoustic stimulation. 17 normal young hearing university students were participated. Clicks were presented at the intensity of 90 dB nHL to one ear and the click intensity was increased from 0 to 90 dB nHL with a separation of 10 dB to another ear, simultaneous. BI waveform was obtained by subtracting the sum of the asymmetrically evoked potentials from the binaurally evoked potentials; i.e. BI = B - (L + R). Latency and amplitude was measured 'peak to following trough' of IV-V complex of BI waveform. Threshold of BIC (t-BIC) was obtained using amplitude depend on stimulus intensities (paired sample t-test). Latency shifted in 4.65, 4.63, 4.57, 4.58, 4.62, 4.6, 4.48, 4.36, 4.23 ms for peak, 5.57, 5.51, 5.51, 5.59, 5.61, 5.55, 5.44, 5.28, 5.19 ms for trough, and amplitude shifted in .0.32, -0.3, -0.34, -0.32, -0.42, -0.53, -0.54, -0.61, $-0.67{\mu}V$ from 0 to 90 dB nHL in every 10 dB, respectively. t-BIC was observed 40 dB nHL(p=.001).

  • PDF

Listener Auditory Perception Enhancement using Virtual Sound Source Design for 3D Auditory System

  • Kang, Cheol Yong;Mariappan, Vinayagam;Cho, Juphil;Lee, Seon Hee
    • International journal of advanced smart convergence
    • /
    • v.5 no.4
    • /
    • pp.15-20
    • /
    • 2016
  • When a virtual sound source for 3D auditory system is reproduced by a linear loudspeaker array, listeners can perceive not only the direction of the source, but also its distance. Control over perceived distance has often been implemented via the adjustment of various acoustic parameters, such as loudness, spectrum change, and the direct-to-reverberant energy ratio; however, there is a neglected yet powerful cue to the distance of a nearby virtual sound source that can be manipulated for sources that are positioned away from the listener's median plane. This paper address the problem of generating binaural signals for moving sources in closed or in open environments. The proposed perceptual enhancement algorithm composed of three main parts is developed: propagation, reverberation and the effect of the head, torso and pinna. For propagation the effect of attenuation due to distance and molecular air-absorption is considered. Related to the interaction of sounds with the environment, especially in closed environments is reverberation. The effects of the head, torso and pinna on signals that arrive at the listener are also objectives of the consideration. The set of HRTF that have been used to simulate the virtual sound source environment for 3D auditory system. Special attention has been given to the modelling and interpolation of HRTFs for the generation of new transfer functions and definition of trajectories, definition of closed environment, etc. also be considered for their inclusion in the program to achieve realistic binaural renderings. The evaluation is implemented in MATLAB.