• Title/Summary/Keyword: binary-thermal decoding

Search Result 3, Processing Time 0.02 seconds

A Design of 10 bit Current Output Type Digital-to-Analog Converter (10-비트 전류출력형 디지털-아날로그 변환기의 설계)

  • Gyoun Gi-Hyub;Kim Tae-Min;Shin Gun-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.1073-1081
    • /
    • 2005
  • This paper describes a 3.3 V 10 bit CMOS digital-to-analog converter with a divided architecture of a 7 MSB and a 3 LSB, which uses an optimal Thermal-to-Binary Decoding method. Most of Dfh converters with hiか speed current drive are an architecture choosing current switch cell, column, row decoding method but this decoding circuit is complicated, occupies a large chip area. For these problems, this paper describes a D/A converter using an optimal Thermal-to-Binary Decoding method. The designed D/A converter with an active chip area of $0.953\;mm^2$ is fabricated by using a 0.35um process. The simulation data shows that the rise/fall time, settling time, and INL/DNL are 1.92/2.1 ns, 12.71 ns, and a less than ${\pm}2.3/{\pm}58$ LSB, respectively. The power dissipation of the D/A converter with a single power supply of 3.3 V is about 224 mW.

Monolithic and Resolution with design of 10bit Current output Type Digital-to-Analog Converter (개선된 선형성과 해상도를 가진 10비트 전류 출력형 디지털-아날로그 변환기의 설계)

  • Song, Jun-Gue;Shin, Gun-Soon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.187-191
    • /
    • 2007
  • This paper describes a 3.3V 10 bit CMOS digital-to-analog converter with a divided architecture of a 7 MSB and a 3 LSB, which uses an optimal Thermal-to-Binary Decoding method with monotonicity, glitch energy. The output stage utilizes here implements a return-to-zero circuit to obtain the dynamic performance. Most of D/A converters in decoding circuit is complicated, occupies a large chip area. For these problems, this paper describes a D/A converter using an optimal Thermal-to-Binary Decoding method. the designed D/A converter using the CMOS n-well $0.35{\mu}m$ process0. The experimental data shows that the rise/fall time, settling time, and INL/DNL are 1.90ns/2.0ns, 12.79ns, and a less than ${\pm}2.5/{\pm}0.7$ LSB, respectively. The power dissipation of the D/A converter with a single power supply of 3.3V is about 250mW.

  • PDF

A Design of 10bit current output Type Digital-to-Analog converter with self-Calibration Techique for high Resolution (고해상도를 위한 DAC 오차 보정법을 가진 10-비트 전류 출력형 디지털-아날로그 변환기 설계)

  • Song, Jung-Gue;Shin, Gun-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.691-698
    • /
    • 2008
  • This paper describes a 3.3V 10 bit CMOS digital-to-analog converter with a divided architecture of a 7 MSB and a 3 LSB, which uses an optimal Thermal-to-Binary Decoding method with monotonicity, glitch energy. The output stage utilizes here implements a return-to-zero circuit to obtain the dynamic performance. Most of D/A converters in decoding circuit is complicated, occupies a large chip area. For these problems, this paper describes a D/A converter using an optimal Thermal-to-Binary Decoding method. the designed D/A converter using the CMOS n-well $0.35{\mu}m$ process0. The experimental data shows that the rise/fall time, settling time, and INL/DNL are 1.90ns/2.0ns, 12.79ns, and a less than ${\pm}2.5/{\pm}0.7\;LSB$, respectively. The power dissipation of the D/A converter with a single power supply of 3.3V is about 250mW.