• 제목/요약/키워드: binary vector

검색결과 373건 처리시간 0.018초

계층 클러스터 트리 기반 라만 스펙트럼 식별 고속 검색 알고리즘 (A Hierarchical Cluster Tree Based Fast Searching Algorithm for Raman Spectroscopic Identification)

  • 김순금;고대영;박준규;박아론;백성준
    • 한국산학기술학회논문지
    • /
    • 제20권3호
    • /
    • pp.562-569
    • /
    • 2019
  • 최근에 원 거리에서 폭발 물질의 감지를 위해 라만 분광 기기의 관심이 점차 증가하고 있다. 더불어 측정된 화학물질에 대한 라만 스펙트럼을 대용량 데이터베이스의 알려진 라만 스펙트라와 비교하여 식별할 수 있는 고속 검색 방법에 대한 요구도 커지고 있다. 지금까지 가장 간단하고 널리 사용되는 방법은 주어진 스펙트럼과 데이터베이스 스펙트라 사이의 유클리드 거리를 계산하고 비교하는 방법이다. 하지만 고차원 데이터의 속성으로 검색의 문제는 그리 간단하지 않다. 가장 큰 문제점중의 하나는 검색 방법에 있어서 연산량이 많아 계산 시간이 너무 오래 걸린다는 것이다. 이러한 문제점을 극복하기 위해, 우리는 정렬된 분산에 따른 MPS Sort+PDS 방법을 제안하였다. 이 방법은 벡터의 두 개의 주요한 특징으로 평균과 분산을 사용하여 후보가 될 수 없는 많은 코드워드를 계산하지 않으므로 연산량을 줄이고 계산 시간을 줄여준다. 본 논문에서 우리는 기존의 방법보다 더욱 더 향상된 2가지 새로운 방법의 고속 검색 알고리즘을 제안한다. PCA+PDS 방법은 전체 데이터를 사용하는 거리 계산과 똑같은 결과를 가지면서 PCA 변환을 통해 데이터의 차수를 감소시켜 계산량을 줄여준다. Hierarchical Cluster Tree 알고리즘은 PCA 변환된 스펙트라 데이터를 사용하여 이진 계층 클러스터 트리를 만든다. 그런 후 입력 스펙트럼과 가장 가까운 클러스터부터 검색을 시작하여 후보가 될 수 없는 많은 스펙트라를 계산하지 않으므로 연산량을 줄이고 계산 시간을 줄여준다. 실험은 정렬된 분산에 따른 MPS Sort+PDS와 비교하여 PCA+PDS는 60.06%의 성능 향상을 보였다. Hierarchical Cluster Tree는 PCA+PDS와 비교하여 17.74%의 성능향상을 보였다. 실험결과는 제안된 알고리즘이 고속 검색에 적합함을 확인시켜 준다.

S-MTS를 이용한 강판의 표면 결함 진단 (Steel Plate Faults Diagnosis with S-MTS)

  • 김준영;차재민;신중욱;염충섭
    • 지능정보연구
    • /
    • 제23권1호
    • /
    • pp.47-67
    • /
    • 2017
  • 강판 표면 결함은 강판의 품질과 가격을 결정하는 중요한 요인 중 하나로, 많은 철강 업체는 그동안 검사자의 육안으로 강판 표면 결함을 확인해왔다. 그러나 시각에 의존한 검사는 통상 30% 이상의 판단 오류가 발생함에 따라 검사 신뢰도가 낮은 문제점을 갖고 있다. 따라서 본 연구는 Simultaneous MTS (S-MTS) 알고리즘을 적용하여 보다 지능적이고 높은 정확도를 갖는 새로운 강판 표면 결함 진단 시스템을 제안하였다. S-MTS 알고리즘은 단일 클래스 분류에는 효과적이지만 다중 클래스 분류에서 정확도가 떨어지는 기존 마할라노비스 다구찌시스템 알고리즘(Mahalanobis Taguchi System; MTS)의 문제점을 해결한 새로운 알고리즘이다. 강판 표면 결함 진단은 대표적인 다중 클래스 분류 문제에 해당하므로, 강판 표면 결함 진단 시스템 구축을 위해 본 연구에서는 S-MTS 알고리즘을 채택하였다. 강판 표면 결함 진단 시스템 개발은 S-MTS 알고리즘에 따라 다음과 같이 진행하였다. 첫째, 각 강판 표면 결함 별로 개별적인 참조 그룹 마할라노비스 공간(Mahalanobis Space; MS)을 구축하였다. 둘째, 구축된 참조 그룹 MS를 기반으로 비교 그룹 마할라노비스 거리(Mahalanobis Distance; MD)를 계산한 후 최소 MD를 갖는 강판 표면 결함을 비교 그룹의 강판 표면 결함으로 판단하였다. 셋째, 강판 표면 결함을 분류하는 데 있어 결함 간의 차이점을 명확하게 해주는 예측 능력이 높은 변수를 파악하였다. 넷째, 예측 능력이 높은 변수만을 이용해 강판 표면 결함 분류를 재수행함으로써 최종적인 강판 표면 결함 진단 시스템을 구축한다. 이와 같은 과정을 통해 구축한 S-MTS 기반 강판 표면 결함 진단 시스템의 정확도는 90.79%로, 이는 기존 검사 방법에 비해 매우 높은 정확도를 갖는 유용한 방법임을 보여준다. 추후 연구에서는 본 연구를 통해 개발된 시스템을 현장 적용하여, 실제 효과성을 검증할 필요가 있다.

효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용 (A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market)

  • 이모세;안현철
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.167-181
    • /
    • 2018
  • 지난 10여 년간 딥러닝(Deep Learning)은 다양한 기계학습 알고리즘 중에서 많은 주목을 받아 왔다. 특히 이미지를 인식하고 분류하는데 효과적인 알고리즘으로 알려져 있는 합성곱 신경망(Convolutional Neural Network, CNN)은 여러 분야의 분류 및 예측 문제에 널리 응용되고 있다. 본 연구에서는 기계학습 연구에서 가장 어려운 예측 문제 중 하나인 주식시장 예측에 합성곱 신경망을 적용하고자 한다. 구체적으로 본 연구에서는 그래프를 입력값으로 사용하여 주식시장의 방향(상승 또는 하락)을 예측하는 이진분류기로써 합성곱 신경망을 적용하였다. 이는 그래프를 보고 주가지수가 오를 것인지 내릴 것인지에 대해 경향을 예측하는 이른바 기술적 분석가를 모방하는 기계학습 알고리즘을 개발하는 과제라 할 수 있다. 본 연구는 크게 다음의 네 단계로 수행된다. 첫 번째 단계에서는 데이터 세트를 5일 단위로 나눈다. 두 번째 단계에서는 5일 단위로 나눈 데이터에 대하여 그래프를 만든다. 세 번째 단계에서는 이전 단계에서 생성된 그래프를 사용하여 학습용과 검증용 데이터 세트를 나누고 합성곱 신경망 분류기를 학습시킨다. 네 번째 단계에서는 검증용 데이터 세트를 사용하여 다른 분류 모형들과 성과를 비교한다. 제안한 모델의 유효성을 검증하기 위해 2009년 1월부터 2017년 2월까지의 약 8년간의 KOSPI200 데이터 2,026건의 실험 데이터를 사용하였다. 실험 데이터 세트는 CCI, 모멘텀, ROC 등 한국 주식시장에서 사용하는 대표적인 기술지표 12개로 구성되었다. 결과적으로 실험 데이터 세트에 합성곱 신경망 알고리즘을 적용하였을 때 로지스틱회귀모형, 단일계층신경망, SVM과 비교하여 제안모형인 CNN이 통계적으로 유의한 수준의 예측 정확도를 나타냈다.