• Title/Summary/Keyword: binary system

Search Result 1,885, Processing Time 0.028 seconds

Adsorption of Dyes with Different Functional Group by Activated Carbon: Parameters and Competitive Adsorption (활성탄에 의한 작용기가 다른 염료의 흡착: 파라미터 및 경쟁 흡착)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.151-158
    • /
    • 2022
  • In this paper, parameter characteristics such as pH effect, isotherm, kinetic and thermodynamic parameters and competitive adsorption of dyes including malachite green (MG), direct red 81 (DR 81) and thioflavin S (TS), which have different functional groups, being adsorbed onto activated carbon were investigated. Langmuir, Freundlich and Temkin isotherm models were employed to find the adsorption mechanism. Effectiveness of adsorption treatment of three dyes by activated carbon were confirmed by the Langmuir dimensionless separation factor. The mechanism was found to be a physical adsorption which can be verified through the adsorption heat calculated by Temkin equation. The adsorption kinetics followed the pseudo second order and the rate limiting step was intra-particle diffusion. The positive enthalpy and entropy changes showed an endothermic reaction and increased disorder via adsorption at the S-L interface, respectively. For each dye molecule, negative Gibbs free energy increased with the temperature, which means that the process is spontaneous. In the binary component system, it was found that the same functional groups of the dye could interfere with the mutual adsorption, and different functional groups did not significantly affect the adsorption. In the ternary component system, the adsorption for MG lowered a bit, likely to be disturbed by the other dyes meanwhile DR 81 and TS were to be positively affected by the presence of MG, thus resulting in much higher adsorption.

A Sanitizer for Detecting Vulnerable Code Patterns in uC/OS-II Operating System-based Firmware for Programmable Logic Controllers (PLC용 uC/OS-II 운영체제 기반 펌웨어에서 발생 가능한 취약점 패턴 탐지 새니타이저)

  • Han, Seungjae;Lee, Keonyong;You, Guenha;Cho, Seong-je
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.1
    • /
    • pp.65-79
    • /
    • 2020
  • As Programmable Logic Controllers (PLCs), popular components in industrial control systems (ICS), are incorporated with the technologies such as micro-controllers, real-time operating systems, and communication capabilities. As the latest PLCs have been connected to the Internet, they are becoming a main target of cyber threats. This paper proposes two sanitizers that improve the security of uC/OS-II based firmware for a PLC. That is, we devise BU sanitizer for detecting out-of-bounds accesses to buffers and UaF sanitizer for fixing use-after-free bugs in the firmware. They can sanitize the binary firmware image generated in a desktop PC before downloading it to the PLC. The BU sanitizer can also detect the violation of control flow integrity using both call graph and symbols of functions in the firmware image. We have implemented the proposed two sanitizers as a prototype system on a PLC running uC/OS-II and demonstrated the effectiveness of them by performing experiments as well as comparing them with the existing sanitizers. These findings can be used to detect and mitigate unintended vulnerabilities during the firmware development phase.

Comparative Evaluation on the Cost Analysis of Software Development Model Based on Weibull Lifetime Distribution (와이블 수명분포에 근거한 소프트웨어 개발모형의 비용 분석에 관한 비교 평가)

  • Bae, Hyo-Jeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.193-200
    • /
    • 2022
  • In this study, the finite-failure NHPP software reliability model was applied to the software development model based on the Weibull lifetime distribution (Goel-Okumoto, Rayleigh, Type-2 Gumbe), which is widely used in the software reliability field, and then the cost attributes were compared and evaluated. For this study, failure time data detected during normal operation of the software system were collected and used, the most-likelihood estimation (MLE) method was applied to the parameter estimation of the proposed model, and the calculation of the nonlinear equation was solved using the binary method. As a result, first, in the software development model, when the cost of testing per unit time and the cost of removing a single defect increased, the cost increased but the release time did not change, and when the cost of repairing failures detected during normal system operation increased, the cost increased and the release time was also delayed. Second, as a result of comprehensive comparative analysis of the proposed models, it was found that the Type-2 Gumble model was the most efficient model because the development cost was lower and the release time point was relatively faster than the Rayleigh model and the Goel-Okumoto basic model. Third, through this study, the development cost properties of the Weibull distribution model were newly evaluated, and the analyzed data is expected to be utilized as design data that enables software developers to explore the attributes of development cost and release time.

Development of surface detection model for dried semi-finished product of Kimbukak using deep learning (딥러닝 기반 김부각 건조 반제품 표면 검출 모델 개발)

  • Tae Hyong Kim;Ki Hyun Kwon;Ah-Na Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.4
    • /
    • pp.205-212
    • /
    • 2024
  • This study developed a deep learning model that distinguishes the front (with garnish) and the back (without garnish) surface of the dried semi-finished product (dried bukak) for screening operation before transfter the dried bukak to oil heater using robot's vacuum gripper. For deep learning model training and verification, RGB images for the front and back surfaces of 400 dry bukak that treated by data preproccessing were obtained. YOLO-v5 was used as a base structure of deep learning model. The area, surface information labeling, and data augmentation techniques were applied from the acquired image. Parameters including mAP, mIoU, accumulation, recall, decision, and F1-score were selected to evaluate the performance of the developed YOLO-v5 deep learning model-based surface detection model. The mAP and mIoU on the front surface were 0.98 and 0.96, respectively, and on the back surface, they were 1.00 and 0.95, respectively. The results of binary classification for the two front and back classes were average 98.5%, recall 98.3%, decision 98.6%, and F1-score 98.4%. As a result, the developed model can classify the surface information of the dried bukak using RGB images, and it can be used to develop a robot-automated system for the surface detection process of the dried bukak before deep frying.

Patient Setup Aid with Wireless CCTV System in Radiation Therapy (무선 CCTV 시스템을 이용한 환자 고정 보조기술의 개발)

  • Park, Yang-Kyun;Ha, Sung-Whan;Ye, Sung-Joon;Cho, Woong;Park, Jong-Min;Park, Suk-Won;Huh, Soon-Nyung
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.300-308
    • /
    • 2006
  • $\underline{Purpose}$: To develop a wireless CCTV system in semi-beam's eye view (BEV) to monitor daily patient setup in radiation therapy. $\underline{Materials\;and\;Methods}$: In order to get patient images in semi-BEV, CCTV cameras are installed in a custom-made acrylic applicator below the treatment head of a linear accelerator. The images from the cameras are transmitted via radio frequency signal (${\sim}2.4\;GHz$ and 10 mW RF output). An expected problem with this system is radio frequency interference, which is solved utilizing RF shielding with Cu foils and median filtering software. The images are analyzed by our custom-made software. In the software, three anatomical landmarks in the patient surface are indicated by a user, then automatically the 3 dimensional structures are obtained and registered by utilizing a localization procedure consisting mainly of stereo matching algorithm and Gauss-Newton optimization. This algorithm is applied to phantom images to investigate the setup accuracy. Respiratory gating system is also researched with real-time image processing. A line-laser marker projected on a patient's surface is extracted by binary image processing and the breath pattern is calculated and displayed in real-time. $\underline{Results}$: More than 80% of the camera noises from the linear accelerator are eliminated by wrapping the camera with copper foils. The accuracy of the localization procedure is found to be on the order of $1.5{\pm}0.7\;mm$ with a point phantom and sub-millimeters and degrees with a custom-made head/neck phantom. With line-laser marker, real-time respiratory monitoring is possible in the delay time of ${\sim}0.17\;sec$. $\underline{Conclusion}$: The wireless CCTV camera system is the novel tool which can monitor daily patient setups. The feasibility of respiratory gating system with the wireless CCTV is hopeful.

Haptic Perception presented in Picturesque Gardens - With a Focus on Picturesque Garden in Eighteenth-Century England - (픽처레스크 정원에 나타난 촉지적 지각 - 18세기 영국 픽처레스크 정원을 중심으로 -)

  • Kim, Jin-Seob;Kim, Jin-Seon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.2
    • /
    • pp.37-51
    • /
    • 2016
  • Modern optical mechanisms slanted toward Ocular-centrism have neglected diverse functions of vision, judged objects in abstract and binary perspectives, and organized spaces accordingly, there by neglecting the function of eyes groping objects. Recently, various experiences have been induced through communication with other senses by the complex perception beyond the binary perception system of vision. Haptic perception is dynamic vision that induces accompanying bodily experiences through interaction among the various senses; it recognizes the characteristics of material properties and various sensitive stimulations of human beings. This study elaborates on the major features of haptic perception by examining the theoretical background of this concept, which stimulates the active experience of the subject and determines how characteristics of haptic perception are displayed in picturesque gardens. In order to identify the major features of haptic perception, this study examines how Adolf Hildebrand's theory of vision is developed, expanded, and reinterpreted by Alois Riegl, Wilhelm Worringer, Walter Benjamin, Maurice Merleau Ponty, and Gilles Deleuze in the histories of philosophy and aesthetics. Based thereon, the core differences in haptic perception models and visual perception models are analyzed, and the features of haptic perception are identified. Then, classical gardens are set for visual perception and picturesque gardens are set for haptic perception so that the features from haptic perception identified previously are projected onto the picturesque gardens. The research results drawn from this study regarding features of haptic perception presented in picturesque gardens are as follows. The core differences of haptic perception in contrast to visual perception can be summarized as ambiguity and obscureness of boundaries, generation of dynamic perspectives, induction of motility by indefinite circulation, and strangeness and sublime beauty by the impossibility of perception. In picturesque gardens, the ambiguity and obscureness of boundaries are presented in the irregularity and asymmetric elements of planes and the rejection of a single view, and the generation of dynamic perspectives results from the adoption of narrative structure and overlapping of spaces through the creation of complete views, medium range views, and distant views, which the existing gardens lack. Thus, the scene composition technique is reproduced. The induction of motility by indefinite circulation is created by branching circulation, and strangeness and sublime beauty are presented through the use of various elements and the adoption of 'roughness', 'irregularity', and 'ruins' in the gardens.

Corporate Credit Rating based on Bankruptcy Probability Using AdaBoost Algorithm-based Support Vector Machine (AdaBoost 알고리즘기반 SVM을 이용한 부실 확률분포 기반의 기업신용평가)

  • Shin, Taek-Soo;Hong, Tae-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.25-41
    • /
    • 2011
  • Recently, support vector machines (SVMs) are being recognized as competitive tools as compared with other data mining techniques for solving pattern recognition or classification decision problems. Furthermore, many researches, in particular, have proved them more powerful than traditional artificial neural networks (ANNs) (Amendolia et al., 2003; Huang et al., 2004, Huang et al., 2005; Tay and Cao, 2001; Min and Lee, 2005; Shin et al., 2005; Kim, 2003).The classification decision, such as a binary or multi-class decision problem, used by any classifier, i.e. data mining techniques is so cost-sensitive particularly in financial classification problems such as the credit ratings that if the credit ratings are misclassified, a terrible economic loss for investors or financial decision makers may happen. Therefore, it is necessary to convert the outputs of the classifier into wellcalibrated posterior probabilities-based multiclass credit ratings according to the bankruptcy probabilities. However, SVMs basically do not provide such probabilities. So it required to use any method to create the probabilities (Platt, 1999; Drish, 2001). This paper applied AdaBoost algorithm-based support vector machines (SVMs) into a bankruptcy prediction as a binary classification problem for the IT companies in Korea and then performed the multi-class credit ratings of the companies by making a normal distribution shape of posterior bankruptcy probabilities from the loss functions extracted from the SVMs. Our proposed approach also showed that their methods can minimize the misclassification problems by adjusting the credit grade interval ranges on condition that each credit grade for credit loan borrowers has its own credit risk, i.e. bankruptcy probability.

Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections (다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론)

  • Kim, Museong;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.175-197
    • /
    • 2021
  • Recently, with the development of deep learning technology, research on unstructured data analysis is being actively conducted, and it is showing remarkable results in various fields such as classification, summary, and generation. Among various text analysis fields, text classification is the most widely used technology in academia and industry. Text classification includes binary class classification with one label among two classes, multi-class classification with one label among several classes, and multi-label classification with multiple labels among several classes. In particular, multi-label classification requires a different training method from binary class classification and multi-class classification because of the characteristic of having multiple labels. In addition, since the number of labels to be predicted increases as the number of labels and classes increases, there is a limitation in that performance improvement is difficult due to an increase in prediction difficulty. To overcome these limitations, (i) compressing the initially given high-dimensional label space into a low-dimensional latent label space, (ii) after performing training to predict the compressed label, (iii) restoring the predicted label to the high-dimensional original label space, research on label embedding is being actively conducted. Typical label embedding techniques include Principal Label Space Transformation (PLST), Multi-Label Classification via Boolean Matrix Decomposition (MLC-BMaD), and Bayesian Multi-Label Compressed Sensing (BML-CS). However, since these techniques consider only the linear relationship between labels or compress the labels by random transformation, it is difficult to understand the non-linear relationship between labels, so there is a limitation in that it is not possible to create a latent label space sufficiently containing the information of the original label. Recently, there have been increasing attempts to improve performance by applying deep learning technology to label embedding. Label embedding using an autoencoder, a deep learning model that is effective for data compression and restoration, is representative. However, the traditional autoencoder-based label embedding has a limitation in that a large amount of information loss occurs when compressing a high-dimensional label space having a myriad of classes into a low-dimensional latent label space. This can be found in the gradient loss problem that occurs in the backpropagation process of learning. To solve this problem, skip connection was devised, and by adding the input of the layer to the output to prevent gradient loss during backpropagation, efficient learning is possible even when the layer is deep. Skip connection is mainly used for image feature extraction in convolutional neural networks, but studies using skip connection in autoencoder or label embedding process are still lacking. Therefore, in this study, we propose an autoencoder-based label embedding methodology in which skip connections are added to each of the encoder and decoder to form a low-dimensional latent label space that reflects the information of the high-dimensional label space well. In addition, the proposed methodology was applied to actual paper keywords to derive the high-dimensional keyword label space and the low-dimensional latent label space. Using this, we conducted an experiment to predict the compressed keyword vector existing in the latent label space from the paper abstract and to evaluate the multi-label classification by restoring the predicted keyword vector back to the original label space. As a result, the accuracy, precision, recall, and F1 score used as performance indicators showed far superior performance in multi-label classification based on the proposed methodology compared to traditional multi-label classification methods. This can be seen that the low-dimensional latent label space derived through the proposed methodology well reflected the information of the high-dimensional label space, which ultimately led to the improvement of the performance of the multi-label classification itself. In addition, the utility of the proposed methodology was identified by comparing the performance of the proposed methodology according to the domain characteristics and the number of dimensions of the latent label space.

Steel Plate Faults Diagnosis with S-MTS (S-MTS를 이용한 강판의 표면 결함 진단)

  • Kim, Joon-Young;Cha, Jae-Min;Shin, Junguk;Yeom, Choongsub
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.47-67
    • /
    • 2017
  • Steel plate faults is one of important factors to affect the quality and price of the steel plates. So far many steelmakers generally have used visual inspection method that could be based on an inspector's intuition or experience. Specifically, the inspector checks the steel plate faults by looking the surface of the steel plates. However, the accuracy of this method is critically low that it can cause errors above 30% in judgment. Therefore, accurate steel plate faults diagnosis system has been continuously required in the industry. In order to meet the needs, this study proposed a new steel plate faults diagnosis system using Simultaneous MTS (S-MTS), which is an advanced Mahalanobis Taguchi System (MTS) algorithm, to classify various surface defects of the steel plates. MTS has generally been used to solve binary classification problems in various fields, but MTS was not used for multiclass classification due to its low accuracy. The reason is that only one mahalanobis space is established in the MTS. In contrast, S-MTS is suitable for multi-class classification. That is, S-MTS establishes individual mahalanobis space for each class. 'Simultaneous' implies comparing mahalanobis distances at the same time. The proposed steel plate faults diagnosis system was developed in four main stages. In the first stage, after various reference groups and related variables are defined, data of the steel plate faults is collected and used to establish the individual mahalanobis space per the reference groups and construct the full measurement scale. In the second stage, the mahalanobis distances of test groups is calculated based on the established mahalanobis spaces of the reference groups. Then, appropriateness of the spaces is verified by examining the separability of the mahalanobis diatances. In the third stage, orthogonal arrays and Signal-to-Noise (SN) ratio of dynamic type are applied for variable optimization. Also, Overall SN ratio gain is derived from the SN ratio and SN ratio gain. If the derived overall SN ratio gain is negative, it means that the variable should be removed. However, the variable with the positive gain may be considered as worth keeping. Finally, in the fourth stage, the measurement scale that is composed of selected useful variables is reconstructed. Next, an experimental test should be implemented to verify the ability of multi-class classification and thus the accuracy of the classification is acquired. If the accuracy is acceptable, this diagnosis system can be used for future applications. Also, this study compared the accuracy of the proposed steel plate faults diagnosis system with that of other popular classification algorithms including Decision Tree, Multi Perception Neural Network (MLPNN), Logistic Regression (LR), Support Vector Machine (SVM), Tree Bagger Random Forest, Grid Search (GS), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The steel plates faults dataset used in the study is taken from the University of California at Irvine (UCI) machine learning repository. As a result, the proposed steel plate faults diagnosis system based on S-MTS shows 90.79% of classification accuracy. The accuracy of the proposed diagnosis system is 6-27% higher than MLPNN, LR, GS, GA and PSO. Based on the fact that the accuracy of commercial systems is only about 75-80%, it means that the proposed system has enough classification performance to be applied in the industry. In addition, the proposed system can reduce the number of measurement sensors that are installed in the fields because of variable optimization process. These results show that the proposed system not only can have a good ability on the steel plate faults diagnosis but also reduce operation and maintenance cost. For our future work, it will be applied in the fields to validate actual effectiveness of the proposed system and plan to improve the accuracy based on the results.

Studies on the Micelle Formation of Nonionic Surfactant(1) -1NMR Self-Diffusion and Proton Relaxation of Polyoxyethylene Alkyl Ether- (계면활성제 수용액의 미셀형성(제1보) - Polyoxyethylene Alkyl Ether의 자기확산과 프로톤 이완 -)

  • Choi, Seung-Ok;Jeong, Hwan-Kyeong;Lee, Jin-Hee;Nam, Ki-Dae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.822-828
    • /
    • 1998
  • Binary system of water and polyoxyethylene dodecyl ether, $C_{12}H_{25}(OCH_2CH_2)nOH$, have been studied by $^1H$ NMR techniques. For n=5($C_{12}EO_5$) and n=8($C_{12}EO_8$), the self-diffusion coefficients of nonionic surfactants in the isotropic phase($L_1$) have been measured by using pulsed field gradient technique for a range of temperature and concentrations. In addition the line widths of the different proton signals have been monitored, and samples of some liquid crystalline characteristic were also studied. Dramatic Broadening of the methylene signals of the alkyl($C_{12}H_{25}$) chain is observed as the hexagonal liquid crystalline phase is approached in the $C_{12}EO_5-$water system, while only small broadening is observed in the $C_{12}EO_8-$water system. It was shown that there was a growth of $C_{12}EO_5$ micelles to rods with increasing concentrations, while the $C_{12}EO_8-$ micelles at low temperature remain small in the concentration range. The self-diffusion coefficients of the surfactants decrease rapidly with increasing concentration until a minimum is reached after which there is slow increase. The location of the minimum point occurs at lower concentrations the temperature is close to the cloud point, where the system separate into two isotropic phase. In the line width studies, broadening is found at a certain temperature interval when the concentration is increased in the $C_{12}EO_5$ system. The results indicate that the surfactant aggregates grow in size at the cloud point is approached. The aggregates seem to be flexible and probably not to be of a definite shape close to the cloud point. In the $C_{12}EO_8$ system, the micelles are much less affected by an increase in temperature and micellar growth can't be unambiguously established. The methylene signals of the ethylene oxide moieties consistantly show narrower $^1H$ signals, showing that in the aggregates they are less ordered than the chain methylenes. The various changes in aggregate size and shape are correlated with the stability ranges of the isotropic and liquid crystalline phases according to phase diagrams from the literature. Both aggregate size and phase structure are in qualitative agreement with concentration based on the effective shape of the molecules at different temperature and concentration.

  • PDF