• Title/Summary/Keyword: binary star

Search Result 161, Processing Time 0.029 seconds

Type Ibc Supernova Progenitors in Binary Systems: Observational Constraints on the Progenitor Candidate of the Supernova iPTF13bvn

  • Kim, Hyun-Jeong;Yoon, Sung-Chul;Koo, Bon-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.85.1-85.1
    • /
    • 2014
  • The progenitors of Type Ibc supernovae (SNe Ibc) have been believed to be massive Wolf-Rayet (WR) stars, formed either through stellar wind mass loss or Roche-lobe outflow in a binary system. But observations indicate that ordinary SNe Ibc have relatively low ejecta masses (~2 Msun), which is not compatible with the WR star scenario for SN Ibc progenitors. On the other hand, helium stars in binary systems which can be produced via mass transfer are also suggested as a possible candidate for SN Ibc progenitors. Binary star evolution models predict that SN Ibc progenitors having final masses of 3-7 Msun can be produced, but their observational properties are not well understood. In this study, we present the parameter study on the observational constraints of helium stars of 3-5 Msun in binary systems using evolutionary models and the atmospheric radiative transfer code CMFGEN. We present the predicted magnitudes and spectra of helium stars in optical bands for different wind velocity profiles and mass loss rates. We also present those observables of the progenitor binary system considering O-type companion stars. Based on the results, we discuss the expected observational properties of SN Ibc progenitors in binary systems. In particular, we discuss the constraints on the progenitor of the SN Ib iPTF13bvn of which progenitor candidate has been identified for the first time in pre-explosion images among SNe Ibc.

  • PDF

PERIOD VARIATION OF EROS ECLIPSING BINARY SYSTEMS IN THE LARGE MAGELLAN CLOUD

  • RITTIPRUK, P.;HONG, K.S.;KANG, Y.W.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.211-214
    • /
    • 2015
  • We investigated the period variation for 79 eclipsing binary systems using 20 years (1990-2009) of EROS, Macho, and OGLE survey observations. We discovered 9 apsidal motions, 8 mass transfers, 5 period increasing and decreasing systems, 12 light-travel-time effects, 5 eccentric systems and 40 other systems showing no period variations. We select 3 representative eclipsing binary systems; EROS 1052 for apsidal motion, EROS 1056 for mass transfer, and EROS 1037 for the light-travel-time effect. We determine the period variation rate (dP/dt), orbital parameters of the 3rd body (e3, ${\omega}_3$, $f(m_3)$, $P_3$, $T_3$), apsidal motion parameters ($d{\omega}/dt$, U, Ps, Pa, e) and apsidal motion period by analyzing the light curves and O-C diagrams.

A NEW CLASS OF NEUTRON STAR BINARIES AND ITS IMPLICATIONS

  • LEE, CHANG-HWAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.573-576
    • /
    • 2015
  • Recent discovery of $2M_{\odot}$ neutron stars in white dwarf-neutron star binaries, PSR J1614-2230 and PSR J0348+0432, has given strong constraints on the maximum mass of neutron stars. On the other hand, all well-measured neutron star masses in double neutron star binaries are still less than $1.5M_{\odot}$. These observations suggest that the neutron star masses in binaries may depend on the evolution process of neutron star binaries. In addition, recent works on LMXB (low-mass X-ray binaries) provides us the possibility of estimating the masses and radii of accreting neutron stars in LMXBs. In this talk, we discuss the implications of recent neutron star observations to the neutron star equation of states and the related astrophysical problems. For the evolution of neutron star binaries, we also discuss the possibilities of super-Eddington accretion onto the primary neutron stars.

KIC 6206751: the first R CMa-type eclipsing binary with ɣ Doradus pulsations

  • Lee, Jae Woo;Park, Jang-Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.84.2-84.2
    • /
    • 2019
  • We present the absolute properties of the double-lined eclipsing binary KIC 6206751 exhibiting multiperiodic pulsations. The Kepler light curve of this system was simultaneously solved with the previously published radial-velocity data. The results indicate that the binary star is a short-period semi-detached system with fundamental parameters of $M_1=1.66{\pm}0.04M_{\odot}$, $M_2=0.215{\pm}0.006M_{\odot}$, $R_1=1.53{\pm}0.02R_{\odot}$, $R_2=1.33{\pm}0.02R_{\odot}$, $L_1=5.0{\pm}0.6L_{\odot}$, and $L_2=0.96{\pm}0.09L_{\odot}$. We applied multiple frequency analyses to the eclipse-subtracted light residuals and detected the 42 frequencies below $2.5days^{-1}$. Among these, three independent frequencies of $f_2$, $f_3$, and $f_4$ can be identified as high-order ($38{\leq}n{\leq}40$) low-degree (l=2) gravity-mode oscillations, whereas the other frequencies may be orbital harmonics and combination terms. The ratios between the orbital frequency and the pulsation frequencies are $f_{orb}:f_{2-4}{\simeq}2:3$, which implies that the ${\gamma}$ Dor pulsations of the detached primary star may be excited by the tidal interaction of the secondary companion. The short orbital period, and the low mass ratio and $M_2$ demonstrate that KIC 6206751 is an R CMa-type star, which is most likely evolving into an EL CVn star. Of seven well-studied R CMa-type stars, our program target is the only eclipsing binary with a ${\gamma}$ Dor pulsating component.

  • PDF

Under-Developed and Under-Utilized Eclipsing Binary Model Capabilities

  • Wilson, R.E.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.115-121
    • /
    • 2012
  • Existing but largely unused binary star model capabilities are examined. An easily implemented scheme is parameterization of starspot growth and decay that can stimulate work on outer convection zones and their dynamos. Improved precision in spot computation now enhances analysis of very precise data. An existing computational model for blended spectral line profiles is accurate for binary system effects but needs to include damping, thermal Doppler, and other intrinsic broadening effects. Binary star ephemerides had been found exclusively from eclipse timings until recently, but now come also from whole light and radial velocity curves. A logical further development will be to expand these whole curve solutions to include eclipse timings. An attenuation model for circumstellar clouds, with several absorption and scattering mechanisms, has been applied only once, perhaps because the model clouds have fixed locations. However the clouds could be made to move dynamically and be combined into moving streams and disks. An area of potential interest is polarization curve analysis, where incentive for modeling could follow from publication of observed polarization curves. Other recent advances include direct single step solutions for temperatures of both stars of an eclipsing binary and third body kinematics from combined light and velocity curves.

VARIABLE STARS IN THE REGION OF THE OPEN CLUSTER NGC 457 (산개성단 NGC 457 영역의 변광성)

  • Jeon, Young-Beom;Park, Yoon-Ho;Lee, Sang-Min
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.3
    • /
    • pp.421-438
    • /
    • 2017
  • Through the short-period variability survey program, we obtained time-series BV CCD images for $1.5^{\circ}{\times}1.0^{\circ}$ region around the young open cluster NGC 457. As a result, we have detected 61 variable stars including 31 new ones after checking light curves of all stars by eyes. The 61 variable stars were included 14 ${\delta}$ Scuti variable stars, a ${\beta}$ Cephei variable star, 10 variable Be and slowly pulsating B stars, 13 eclipsing binary stars, 21 semi-long periodic or slow irregular variables and an RR Lyrae variable star, respectively. Many variable B-type stars were known through a well-defined zero-age main sequence to the ${\beta}$ Cepheid region of NGC 457. Most of the variable B-type stars found this paper were known variable stars. But, 11 out of 14 ${\delta}$ Scuti variable stars were newly discovered. The new variable stars except for ${\delta}$ Scuti stars were 4 variable B-type stars, 5 eclipsing binaries and 11 semi-long periodic or slow irregular variables. We have performed frequency analysis for all ${\delta}$ Scuti stars, a ${\beta}$ Cepheid star and an RR Lyrae star.

BINARY STARS AND CLUSTERS AS TESTS OF STELLAR EVOLUTION MODELS

  • ANDERSEN J.;NORDSTROM B.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.239-240
    • /
    • 1996
  • Precise masses, radii, and luminosities from eclipsing binaries and colour-magnitude diagrams for open clusters are classic tools in empirical tests of stellar evolution models. We review the accuracy and completeness required for such data to discriminate between current models and describe some recent. results with implications for convection theory.

  • PDF

Implications of PSR J0737-3039B for the Galactic NS-NS Binary Merger Rate

  • Kim, Chunglee;Perera, Benetge Bhakthi Pranama;McLaughlin, Maura A.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.88.4-89
    • /
    • 2015
  • The Double Pulsar (PSR J0737-3039) is the only neutron star-neutron star (NS-NS) binary in which both NSs have been detectable as radio pulsars. The Double Pulsar has been assumed to dominate the Galactic NS-NS binary merger rate $R_g$ among all known systems, solely based on the properties of the first-born, recycled pulsar (PSR J0737-3039A, or A) with an assumption for the beaming correction factor of 6. In this work, we carefully correct observational biases for the second-born, non-recycled pulsar (PSR J0737-0737B, or B) and estimate the contribution from the Double Pulsar on $R_g$ using constraints available from both A and B. Observational constraints from the B pulsar favour a small beaming correction factor for A (~2), which is consistent with a bipolar model. Considering known NS-NS binaries with the best observational constraints, including both A and B, we obtain $R_g=21_{-14}{^+28}$ per Myr at 95 per cent confidence from our reference model. We expect the detection rate of gravitational waves from NS-NS inspirals for the advanced ground-based gravitational-wave detectors is to be $8_{-5}{^+10}$ per yr at 95 per cent confidence. We discuss prospects of gravitational-wave detection based on our results. Implications of PSR J1906+0746, which is likely to be another tight NS-NS binary in the Galactic disc supported by recent observation, are also remarked.

  • PDF

Constraining the Mass Loss Geometry of Beta Lyrae

  • Lomax, Jamie R.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.1
    • /
    • pp.47-49
    • /
    • 2012
  • Massive binary stars lose mass by two mechanisms: jet-driven mass loss during periods of active mass transfer and by wind-driven mass loss. Beta Lyrae is an eclipsing, semi-detached binary whose state of active mass transfer provides a unique opportunity to study how the evolution of binary systems is affected by jet-driven mass loss. Roche lobe overflow from the primary star feeds the thick accretion disk which almost completely obscures the mass-gaining star. A hot spot predicted to be on the edge of the accretion disk may be the source of beta Lyrae's bipolar outflows. I present results from spectropolarimetric data taken with the University of Wisconsin's Half-Wave Spectropolarimeter and the Flower and Cook Observatory's photoelastic modulating polarimeter instrument which have implications for our current understanding of the system's disk geometry. Using broadband polarimetric analysis, I derive new information about the structure of the disk and the presence and location of a hot spot. These results place constraints on the geometrical distribution of material in beta Lyrae and can help quantify the amount of mass lost from massive interacting binary systems during phases of mass transfer and jet-driven mass loss.

Asymmetric Light curves of Contact and Near-Contact Binaries

  • Rittipruk, Pakakaew;Kang, Young-Woon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.143.1-143.1
    • /
    • 2012
  • We attempt to investigate the main reason of the asymmetrical light curves of contact and near-contact eclipsing binary base on the hypothesis that cool spot was produced on late type star while hot spot was produced from transferred material from their companion star hitting surface. We select 7 eclipsing binary systems which showed asymmetric light curves and mass transfer. Period variation and mass transfer rate were obtained from O-C diagram. Radial velocity curves and light curves of those 7 eclipsing binary system were adopted from available literature in order to obtain the absolute dimension. For four contact eclipsing binary system (AD Phe, EZ Hya, AG Vir and VW Boo), their component stars belonged to spectral type G to K was fitted by cool spot model. While the other two near-contact systems (RT Scl and V1010 Oph) and one contact system (SV Cen) was fitted by cool spot model. The densities of the materials are adopted from stellar model which calculate by stellar structure code. The calculated spot temperature turns out to agree with the photometric solution but there are no correlate between period variation rate and type of spot.

  • PDF