• Title/Summary/Keyword: binary star

Search Result 161, Processing Time 0.025 seconds

Investigating Exoplanet Orbital Evolution Around Binary Star Systems with Mass Loss

  • Rahoma, Walid A.
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.257-264
    • /
    • 2016
  • A planet revolving around binary star system is a familiar system. Studies of these systems are important because they provide precise knowledge of planet formation and orbit evolution. In this study, a method to determine the evolution of an exoplanet revolving around a binary star system using different rates of stellar mass loss will be introduced. Using a hierarchical triple body system, in which the outer body can be moved with the center of mass of the inner binary star as a two-body problem, the long period evolution of the exoplanet orbit is determined depending on a Hamiltonian formulation. The model is simulated by numerical integrations of the Hamiltonian equations for the system over a long time. As a conclusion, the behavior of the planet orbital elements is quite affected by the rate of the mass loss from the accompanying binary star.

Evolution of primary stars in Pop III binary systems

  • Lee, Hunchul;Yoon, Sung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.77.4-78
    • /
    • 2016
  • Binary interactions may have significant impact on Pop III stellar evolution. Pop III single star evolution indicates that for primary masses less than $20M_{\odot}$, no significant binary mass transfer would occur before core helium exhaustion. We perform binary system evolution for various primary masses ($20M_{\odot}$ < $M_1$ < $60M_{\odot}$) and initial periods under same mass ratio $M_2/M_1=0.9$, and follow the evolution and mass transfer of the primary star. If binary mass transfer occurs during post main sequence, the primary star does not evolve into naked helium star and still contain significant hydrogen in the envelope. During the post mass transfer phase, the primary star evolves redward, and does not become sufficiently hot to enhance the number of ionizing photons, compared to the case of single star evolution for a given initial mass. This result implies that primary stars of massive Pop III binary systems would have little contribution to the reionization in the early universe. Given the large hydrogen content ($0.326-1.793M_{\odot}$), the primary stars that underwent stable mass transfers would explode as a Type IIb supernova, and it would be difficult for Pop III binary stars to produce Type Ib/c supernovae that look similar to those found in the local universe.

  • PDF

A Search for Exoplanets in Short-Period Binary Star Systems

  • Kaitchuck, Ronald;Turner, Garrison;Childers, Joseph
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.1
    • /
    • pp.41-45
    • /
    • 2012
  • This paper reports the progress of a search for exoplanets with S-type orbits in short-period binary star systems. The selected targets have stellar orbital periods of just a few days. These systems are eclipsing binaries so that exoplanet transits, if planets exist, will be highly likely. We report the results for seven binary star systems.

THE NEW ECLIPSING POST COMMON-ENVELOPE BINARY SDSS J074548.63+263123.4

  • HEMHA, NIWAT;SANGUANSAK, NUANWAN;IRAWATI, PUJI;DHILLON, VIK;MARSH, TOM R.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.201-204
    • /
    • 2015
  • The common-envelope process is a complicated phase in binary evolution. A lot of effort has been dedicated to study the common-envelope stage, but many questions related to this process are yet to be answered. If one member of the binary survives the common-envelope phase, the binary will emerge as a white dwarf accompanied by a low-mass main sequence star in close orbit, often referred as a post common-envelope binary (PCEB). SDSS J0745+2631 is among the list of newly found PCEBs from the Sloan Digital Sky Survey (SDSS). This star is proposed to be a strong eclipsing system candidate due to the ellipsoidal modulation in its light curve. In this work, we aim to confirm the eclipsing nature of SDSS J0745+2631 and to determine the stellar and orbital parameters using the software Binary Maker 3.0 (BM3.0). We detected the primary eclipse in the light curve of SDSS J0745+2631 in our follow-up observation from January 2014 using the ULTRASPEC instrument at the Thai National Observatory. The data obtained on 7th and 8th January 2014 in g filter show an evident drop in brightness during the eclipse of the white dwarf, but this eclipse is less prominent in the data taken on the next night using a clear filter. According to our preliminary model, we find that SDSS J0745+2631 hosts a rather hot white dwarf with an effective temperature of 11500K. The companion star is a red dwarf star with a temperature of 3800K and radius of 0.3100 $R_{\odot}$. The red dwarf star almost fills its Roche lobe, causing a large ellipsoidal modulation. The mass ratio of the binary given by the Binary Maker 3.0 (BM3.0) model is M2/M1 = 0.33.

volution of massive stars in Case A binary systems and implications for supernova progenitors

  • Lee, Hunchul;Yoon, Sung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.70.4-71
    • /
    • 2020
  • One of the distinctive characteristics of the evolution of binary systems would be mass transfer. Close binary systems experience so-called Case A mass transfer during the main-sequence. We have performed calculations of the evolution of massive Case A (with the initial period 1.5 ~ 4.5 days) binary systems with the initial mass of 10 ~ 20 solar masses and mass ratio 0.5 ~ 0.95 using the MESA code. We find that in some systems, after the first mass transfer, the secondary stars evolve faster than the primary stars and undergo so-called 'reverse' mass transfer. Such phenomena tend to occur in relatively low-mass (initial mass < 16 solar masses) and close (initial period < 3 day) systems. Unless a system enters the common-envelope phase, the primary star would become a single helium star after the secondary star ends its life if the system were unbound by the neutron star kick. We find the various evolutionary implications of the remaining primary stars. In addition to the evolution into the compact single helium star progenitor, there is a possibility that the remaining primary star could evolve into a helium giant star, which could be a promising candidate for Type Ibn supernova progenitor, depending on the core mass. Further, we find that some primary stars satisfy the conditions for the formation of electron-capture supernova progenitor.

  • PDF

BINARIES IN OPEN STAR CLUSTERS: PHOTOMETRIC APPROACH WITH APPLICATION TO THE HYADES

  • ALAWY A. EL-BASSUNY;KORANY B. A.;HAROON A. A.;ISMAIL H. A.;SHARAF M. A.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.3
    • /
    • pp.119-129
    • /
    • 2004
  • A new method has been developed to solve the star cluster membership problem. It is based on synthetic photometry employing the Black Body concept as stellar radiation simulator. Synthetic color-magnitude diagram is constructed showing the main sequence band and the positions of binary star systems of combinations of various components through different photometric tracks. The method has been applied to the Hyades. The cluster membership problem has been re-appraised for the cluster (both single and binary) stars. For the binary members, the components' spectral types have been derived by the method. The results obtained agree very well with those found in literature, The method is simpler than the others and can be developed to undertake other cases as multiple star systems.

BLUE STRAGGLERS, CATACLYSMIC VARIABLES, X-RAY BINARIES, AND MILLISECOND PULSARS IN GLOBULAR CLUSTERS

  • Lee, Hyung-Mok
    • Journal of The Korean Astronomical Society
    • /
    • v.25 no.1
    • /
    • pp.47-64
    • /
    • 1992
  • Cores of globular clusters are an ideal place for close encounters between stars. The outcome of tidal capture can be stellar mergers, close binaries between normal stars (W UMa type), cataclysmic variables composed of white dwarf and normal star pairs, or low-mass X-ray binaries consisting of a neutron star and a normal star pairs. Stellar mergers can be the origin of blue stragglers in dense globular clusters although they are hard to observe. Low mass X-ray binaries would eventually become binary pulsars with short pulse periods after the neutron stars accrete sufficient amount of matter from the companion. However, large number of recently discovered, isolated millisecond pulsars (as opposed to binary pulsars) in globular clusters may imply that they do not have to gain angular speeds during the X-ray binary phase. We propose that these isolated millisecond pulsars may have formed through the disruptive encounters, which lead to the formation of accretion disk without Roche lobe filling companion, between a neutron star and a main-sequence star. Based on recently developed multicomponent models for the dynamical evolution of globular clusters, we compute the expected numbers of various systems formed by tidal capture as a function of time.

  • PDF

BS2fit: A NEW TOOL FOR ANALYSING SPECTRA AND COLOR-MAGNITUDE DIAGRAMS OF GALAXIES AND CLUSTERS

  • LI, ZHONGMU;MAO, CAIYAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.539-541
    • /
    • 2015
  • We present a new tool for studying the spectral energy distributions (SEDs) and color-magnitude diagrams (CMDs) of galaxies and star clusters, BINARY STAR TO FIT (BS2fit). A key feature of this tool is that it takes the effects of binaries, stellar rotation and star formation history into account. It can be used to determine many parameters, including distance, extinction, binary fraction, rotational star fraction, and star formation history. Because more factors are included than in previous tools, BS2fit can potentially give new insight into the properties of galaxies and clusters. One can contact the authors for cooperation and helps via.

The First Comprehensive Photometric Study of the Neglected Binary System V345 Cassiopeiae

  • Jeong, Min-Ji;Kim, Chun-Hwey
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.213-221
    • /
    • 2013
  • We present the first BVRI CCD photometric observations of V345 Cas made on 22 nights during the observing seasons in 2007-2008. Our light curves, resembling those of EB-type binary stars, are analyzed with the 2003 version of the Wilson-Devinney binary code. The photometric study shows that V345 Cas is a typical semi-detached binary system with the primary star being about ${\Delta}T$ = 2400 K hotter, two times more massive, but only 17% larger than the secondary star being filled with it's Roche-lobe. The orbit has a relatively large inclination of about $88^{\circ}$. A cool spot on the secondary component is modeled to explain a small light curve asymmetry. Absolute dimensions and related radiometric parameters of the eclipsing pair are calculated and their evolutionary states are discussed with the HR diagrams of mass-radius and temperature-luminosity. A period analysis of all available times of minima, including our measurements, indicates that the orbital period may vary in a cyclical way, unfortunately the secondary period for the variation can not be uniquely determined because of lack of present timing data.

VARIABLE STARS IN THE REGION OF THE OPEN CLUSTER NGC 225 (산개성단 NGC 225 영역의 변광성)

  • JEON, YOUNG-BEOM;PARK, YOON-HO;LEE, SANG-MIN
    • Publications of The Korean Astronomical Society
    • /
    • v.31 no.3
    • /
    • pp.43-56
    • /
    • 2016
  • Through time-series BV CCD photometry of the open cluster NGC 225 region, we have detected 30 variable stars including 22 new ones. They are five ${\delta}$ Scuti-type variable stars, a slowly pulsating B star, six eclipsing binary stars and 18 semi-long periodic or slow irregular variables, respectively. We have performed multiple-frequency analysis to determine pulsation frequencies of the ${\delta}$ Scuti-type stars and a slowly pulsating B star, using the discrete Fourier transform and linear least-square fitting methods. We also have derived the periods and amplitudes of 6 eclipsing binaries and a long-period variable star from the phase fitting method, and presented the light curves of all variable stars. A slowly pulsating B star is a member of NGC 225, but ${\delta}$ Scuti-type stars are not members from the positions in the color-magnitude diagram and the radial distancies from the center of the cluster. From Dias et al. (2014, A&A, 564, 79), only three variable stars including the slowly pulsating B star are members of clusters: two are in NGC 225 and one is in Stock 24. But a variable star in Stock 24 is not a member of the cluster because of its position of color-magnitude diagarm.