KSII Transactions on Internet and Information Systems (TIIS)
/
제12권9호
/
pp.4412-4428
/
2018
The purpose of this work is to solve the problem of representing an entire video using Convolutional Neural Network (CNN) features for human action recognition. Recently, due to insufficient GPU memory, it has been difficult to take the whole video as the input of the CNN for end-to-end learning. A typical method is to use sampled video frames as inputs and corresponding labels as supervision. One major issue of this popular approach is that the local samples may not contain the information indicated by the global labels and sufficient motion information. To address this issue, we propose a binary hashing method to enhance the local feature extractors. First, we extract the local features and aggregate them into global features using maximum/minimum pooling. Second, we use the binary hashing method to capture the motion features. Finally, we concatenate the hashing features with global features using different normalization methods to train the classifier. Experimental results on the JHMDB and MPII-Cooking datasets show that, for these new local features, binary hashing mapping on the sparsely sampled features led to significant performance improvements.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권8호
/
pp.3790-3803
/
2018
Content-based image retrieval is an approach used to query images based on their semantics. Semantic based retrieval has its application in all fields including medicine, space, computing etc. Semantically generated binary hash codes can improve content-based image retrieval. These semantic labels / binary hash codes can be generated from unlabeled data using convolutional autoencoders. Proposed approach uses semi-supervised deep hashing with semantic learning and binary code generation by minimizing the objective function. Convolutional autoencoders are basis to extract semantic features due to its property of image generation from low level semantic representations. These representations of images are more effective than simple feature extraction and can preserve better semantic information. Proposed activation and loss functions helped to minimize classification error and produce better hash codes. Most widely used datasets have been used for verification of this approach that outperforms the existing methods.
해슁(hashing)을 기반으로 한 근사 최근접 이웃 탐색(approximate nearest neighbors search, ANN search) 방법에서는 데이터 샘플들을 k-비트 이진 코드로 변환하는 해쉬 함수들을 이용함으로써 근접 이웃 탐색이 이진변환 공간에서 이루어지게 된다. 본 논문에서는 PCA 기반 군집화 방법인 Principal Direction Divisive Partitioning(PDDP)를 이용한 해슁 방법을 제안한다. PDDP는 가장 큰 분산을 가지는 클러스터를 선택하여 그 클러스터의 첫 번째 주성분 방향을 이용하여 두 개의 클러스터로 분할하는 과정을 반복적으로 시행하는 군집화 방법이다. 제안하는 해슁 방법에서는 PDDP에서 분할을 위해 사용하는 주성분방향을 바이너리 코딩을 위한 사영벡터로서 사용한다. 실험결과는 제안하는 방법이 다른 해슁 방법들과 비교하여 경쟁력 있는 방법임을 입증한다.
본 논문에서는 3D 콘텐츠 인증을 위한 객체별 특징 벡터 기반 강인한 3D 모델 해싱을 제안한다. 제안한 3D 모델 해싱에서는 다양한 객체들로 구성된 3D 모델에서 높은 면적을 가지는 특징 객체내의 꼭지점 거리들을 그룹화한다. 그리고 각 그룹들을 치환한 다음, 그룹 계수, 랜덤 변수 키와 이진화 과정에 의하여 최종 해쉬를 생성한다. 이 때 해쉬의 강인성은 객체 그룹별 꼭지점 거리 분포를 그룹 계수에 의하여 향상되고, 해쉬의 유일성은 그룹 계수를 치환 키 및 랜덤변수 키 기반의 이진화 과정에 의하여 향상된다. 실험 결과로부터 제안한 해싱이 다양한 메쉬 공격 및 기하학 공격에 대한 해쉬의 강인성과 유일성을 확인하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권12호
/
pp.5058-5072
/
2015
Quaternions have been commonly employed in color image processing, but when the existing pure quaternion representation for color images is used in perceptual hashing, it would degrade the robustness performance since it is sensitive to image manipulations. To improve the robustness in color image perceptual hashing, in this paper a full quaternion representation for color images is proposed by introducing the local image luminance variances. Based on this new representation, a novel Full Quaternion Discrete Cosine Transform (FQDCT)-based hashing is proposed, in which the Quaternion Discrete Cosine Transform (QDCT) is applied to the pseudo-randomly selected regions of the novel full quaternion image to construct two feature matrices. A new hash value in binary is generated from these two matrices. Our experimental results have validated the robustness improvement brought by the proposed full quaternion representation and demonstrated that better performance can be achieved in the proposed FQDCT-based hashing than that in other notable quaternion-based hashing schemes in terms of robustness and discriminability.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권7호
/
pp.2599-2613
/
2015
Multi-index hashing (MIH) is the state-of-the-art method for indexing binary codes, as it di-vides long codes into substrings and builds multiple hash tables. However, MIH is based on the dataset codes uniform distribution assumption, and will lose efficiency in dealing with non-uniformly distributed codes. Besides, there are lots of results sharing the same Hamming distance to a query, which makes the distance measure ambiguous. In this paper, we propose a data-oriented multi-index hashing method (DOMIH). We first compute the covariance ma-trix of bits and learn adaptive projection vector for each binary substring. Instead of using substrings as direct indices into hash tables, we project them with corresponding projection vectors to generate new indices. With adaptive projection, the indices in each hash table are near uniformly distributed. Then with covariance matrix, we propose a ranking method for the binary codes. By assigning different bit-level weights to different bits, the returned bina-ry codes are ranked at a finer-grained binary code level. Experiments conducted on reference large scale datasets show that compared to MIH the time performance of DOMIH can be improved by 36.9%-87.4%, and the search accuracy can be improved by 22.2%. To pinpoint the potential of DOMIH, we further use near-duplicate image retrieval as examples to show the applications and the good performance of our method.
본 논문에서는 경첩 손실 함수를 최소화를 통해서 강인한 이진 오디오 핑거프린팅 방법을 제안하였다. 특히 제안된 방법에서 오디오 핑거프린트는 이진값을 가지므로 핑거프린트 DB 크기를 줄여줄 수 있는 장점이 있다. 일반적으로 특징을 이진화하는 과정에서 핑거프린트의 강인성, 식별성 등 성능의 손실이 불가피하므로 손실을 최소화하는 것이 필요하다. 본 논문에서는 핑거프린팅에서 두 오디오 클립 간의 유사도가 경첩 함수 형태로 주어지는 것에 착안하여 경첩 손실을 최소화하는 방법으로 특징을 이진화하여 핑거프린트를 구하는 방법을 제안한다. 유도된 경첩 손실 함수는 최소 손실 해싱 기법을 통해서 최소화 하였다. 수 천곡 규모의 오디오에 대해서 다양한 변환들에 대한 인식 성능을 실험하였으며, 제안된 경첩 손실 함수 최소화를 통해서 핑거프린트의 식별성과 강인성이 개선됨을 확인하였다.
3D 콘텐츠 산업 분야의 급격한 성장과 더불어, 3D 콘텐츠 인증 및 신뢰, 검색을 위한 콘텐츠 해싱 기술이 요구되어지고 있다. 그러나 영상 및 동영상과 같은 2D 콘텐츠 해싱에 비하여 3D 콘텐츠 해싱에 대한 연구가 아직까지 미비하다. 본 논문에서는 키 기반의 3D 표면 계수 분포를 이용한 강인한 3D 메쉬 모델 해싱 기법을 제안한다. 제안한 기법에서는 기본적인 Euclid 기하학 변환에 강인한 3D SSD와 표면 곡률의 평면계 기반의 블록 표면 계수를 특징 벡터로 사용하며, 이를 치환 키 및 랜덤 변수 키에 의하여 최종 이진 해쉬를 생성한다. 실험 결과로부터 제안한 해싱 기법은 다양한 기하학 및 위상학 공격에 강인하며, 모델 및 키별로 해쉬의 유일성을 확인하였다.
International Journal of Advanced Culture Technology
/
제5권1호
/
pp.76-82
/
2017
An image hash, a discriminative and robust summary of an image, should be robust against quality-preserving signal processing steps, while being pairwise independent for perceptually different inputs. In order to improve the hash matching performance, this paper proposes a probabilistic dissimilarity matching. Instead of extracting the binary hash from the query image, we compute the probability that the intermediate hash vector of the query image belongs to each quantization bin, which is referred to as soft quantization binning. The probability is used as a weight in comparing the binary hash of the query with that stored in a database. A performance evaluation over sets of image distortions shows that the proposed probabilistic matching method effectively improves the hash matching performance as compared with the conventional Hamming distance.
International Journal of Computer Science & Network Security
/
제23권9호
/
pp.141-149
/
2023
Repacked mobile apps constitute about 78% of all malware of Android, and it greatly affects the technical ecosystem of Android. Although many methods exist for repacked app detection, most of them suffer from performance issues. In this manuscript, a novel method using the Constant Key Point Selection and Limited Binary Pattern (CKPS: LBP) Feature extraction-based Hashing is proposed for the identification of repacked android applications through the visual similarity, which is a notable feature of repacked applications. The results from the experiment prove that the proposed method can effectively detect the apps that are similar visually even that are even under the double fold content manipulations. From the experimental analysis, it proved that the proposed CKPS: LBP method has a better efficiency of detecting 1354 similar applications from a repository of 95124 applications and also the computational time was 0.91 seconds within which a user could get the decision of whether the app repacked. The overall efficiency of the proposed algorithm is 41% greater than the average of other methods, and the time complexity is found to have been reduced by 31%. The collision probability of the Hashes was 41% better than the average value of the other state of the art methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.