• Title/Summary/Keyword: binarized method

Search Result 74, Processing Time 0.023 seconds

A Road Feature Extraction and Obstacle Localization Based on Stereo Vision (스테레오 비전 기반의 도로 특징 정보 추출 및 장애 물체 검출)

  • Lee, Chung-Hee;Lim, Young-Chul;Kwon, Soon;Lee, Jong-Hun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.6
    • /
    • pp.28-37
    • /
    • 2009
  • In this paper, we propose an obstacle localization method using a road feature based on a V-disparity map binarized by a maximum frequency value. In a conventional method, the detection performance is severely affected by the size, number and type of obstacles. It's especially difficult to extract a large obstacle or a continuous obstacle like a median strip. So we use a road feature as a new decision standard to localize obstacles irrespective of external environments. A road feature is proper to be a new decision standard because it keeps its rough feature very well in V-disparity under environments where many obstacles exist. And first of all, we create a binary V-disparity map using a maximum frequency value to extract a road feature easily. And then we compare the binary V-disparity map with a median value to remove noises. Finally, we use a linear interpolation for rows which have no value. Comparing this road feature with each column value in disparity map, we can localize obstacles robustly. We also propose a post-processing technique to remove noises made in obstacle localization stage. The results in real road tests show that the proposed algorithm has a better performance than a conventional method.

A Fast Iris Region Finding Algorithm for Iris Recognition (홍채 인식을 위한 고속 홍채 영역 추출 방법)

  • 송선아;김백섭;송성호
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.9
    • /
    • pp.876-884
    • /
    • 2003
  • It is essential to identify both the pupil and iris boundaries for iris recognition. The circular edge detector proposed by Daugman is the most common and powerful method for the iris region extraction. The method is accurate but requires lots of computational time since it is based on the exhaustive search. Some heuristic methods have been proposed to reduce the computational time, but they are not as accurate as that of Daugman. In this paper, we propose a pupil and iris boundary finding algorithm which is faster than and as accurate as that of Daugman. The proposed algorithm searches the boundaries using the Daugman's circular edge detector, but reduces the search region using the problem domain knowledge. In order to find the pupil boundary, the search region is restricted in the maximum and minimum bounding circles in which the pupil resides. The bounding circles are obtained from the binarized pupil image. Two iris boundary points are obtained from the horizontal line passing through the center of the pupil region obtained above. These initial boundary points, together with the pupil point comprise two bounding circles. The iris boundary is searched in this bounding circles. Experiments show that the proposed algorithm is faster than that of Daugman and more accurate than the conventional heuristic methods.

Block Adaptive Binarization of Business Card Images Acquired in PDA Using a Modified Quadratic filter (변형된 Quadratic 필터를 이용한 PDA로 획득한 명함 영상의 블록 적응 이진화)

  • 신기택;장익훈;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6C
    • /
    • pp.801-814
    • /
    • 2004
  • In this paper, we propose a block adaptive binarization (BAB) using a modified quadratic filter (MQF) to binarize business card images acquired by personal digital assistant (PDA) cameras effectively. In the proposed method, a business card image is first partitioned into blocks of 8${\times}$8 and the blocks are then classified into character Hocks (CBs) and background blocks (BBs). Each classified CB is windowed with a 24${\times}$24 rectangular window centering around the CB and the windowed blocks are improved by the pre-processing filter MQF, in which the scheme of threshold selection in QF is modified. The 8${\times}$8 center block of the improved block is barbarized with the threshold selected in the MQF. A binary image is obtained tiling each binarized block in its original position. Experimental results show that the MQF and the BAB have much better effects on the performance of binarization compared to the QF and the global binarization (GB), respectively, for the test business card images acquired in a PDA. Also the proposed BAB using MQF gives binary images of much better quality, in which the characters appear much better clearly, over the conventional GB using QF. In addition, the binary images by the proposed BAB using MQF yields about 87.7% of character recognition rate so that about 32.0% performance improvement over those by the GB using QF yielding about 55.7% of character recognition rate using a commercial character recognition software.

Comparative Analysis of Self-supervised Deephashing Models for Efficient Image Retrieval System (효율적인 이미지 검색 시스템을 위한 자기 감독 딥해싱 모델의 비교 분석)

  • Kim Soo In;Jeon Young Jin;Lee Sang Bum;Kim Won Gyum
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.12
    • /
    • pp.519-524
    • /
    • 2023
  • In hashing-based image retrieval, the hash code of a manipulated image is different from the original image, making it difficult to search for the same image. This paper proposes and evaluates a self-supervised deephashing model that generates perceptual hash codes from feature information such as texture, shape, and color of images. The comparison models are autoencoder-based variational inference models, but the encoder is designed with a fully connected layer, convolutional neural network, and transformer modules. The proposed model is a variational inference model that includes a SimAM module of extracting geometric patterns and positional relationships within images. The SimAM module can learn latent vectors highlighting objects or local regions through an energy function using the activation values of neurons and surrounding neurons. The proposed method is a representation learning model that can generate low-dimensional latent vectors from high-dimensional input images, and the latent vectors are binarized into distinguishable hash code. From the experimental results on public datasets such as CIFAR-10, ImageNet, and NUS-WIDE, the proposed model is superior to the comparative model and analyzed to have equivalent performance to the supervised learning-based deephashing model. The proposed model can be used in application systems that require low-dimensional representation of images, such as image search or copyright image determination.