• Title/Summary/Keyword: binarized method

Search Result 74, Processing Time 0.02 seconds

Vein Recognition Using Infra-red Imaging (적외선을 이용한 정맥인식)

  • Jung, Yeon-Sung;Nam, Boo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.261-263
    • /
    • 2005
  • In this paper, we implement an identification system using the vein image of the hand. The vein pattern is obtained in the grey-scale 2D image through the infrared-red imaging from back of the hand. Since the frame has lack of clearance, we use some enhancing methods such as the complement, addition, and multiplication to the image to increase the contrast. After Wiener filtering for smoothness of the vein pattern, we transform the image into the binary image with mean function. The binarized image is session thinned and the cross-points in the vein tree are obtained by calculating the number of pixels connected because the image is shaped as a tree. We choose the point and find the nearest to the center if it has majority, where we find the two end points of the selected line. We can get the angle between the two lines joined at the cross-point and store its coordinates, angle, and label the values. The values are used as the feature vector of the vein pattern. This procedure is similar to the human cognition sequences. It is shown that the proposed method is simple for the vein recognition.

  • PDF

A Recognition of the Printed Alphabet by Using Nonogram Puzzle (노노그램 퍼즐을 이용한 인쇄체 영문자 인식)

  • Sohn, Young-Sun;Kim, Bo-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.451-455
    • /
    • 2008
  • In this paper we embody a system that recognizes the printed alphabet of two font types (Batang, Dodum) inputted by a black-and-white CCD camera and converts it into an editable text form. The image of the inputted printed sentences is binarized, then the rows of each sentence are separated through the vertical projection using the Histogram method, and the height of the characters are normalized to 48 pixels. With the reverse application of the basic principle of the Nonogram puzzle to the individual normalized character, the character is covered with the pixel-based squares, representing the characteristics of the character as the numerical information of the Nonogram puzzle in order to recognize the character through the comparison with the standard pattern information. The test of 2609 characters of font type Batang and 1475 characters of font type Dodum yielded a 100% recognition rate.

A Study on the Development of Surface Defect Inspection Preprocessing Algorithm for Cold Mill Strip (냉연 표면흠 검사를 위한 전처리 알고리듬에 관한 연구)

  • Kim, Jong-Woong;Kim, Kyoung-Min;Moon, Yun-Shik;Park, Gwi-Tae;Lee, Jong-Hak;Jung, Jin-Yang
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1240-1242
    • /
    • 1996
  • In a still mill, the effective surface defect inspection algorithm is necessary. For this purpose, this paper proposed the preprocessing algorithm for surface defect inspection of cold mill strip. This consists of live steps. They are edge detection, binarizing, noise deletion, combining of fragmented defect and selecting the largest defect. Especially, binarizing is a critical problem. Bemuse the performance of the preprocessing is largely depend on the binarized image. So, we develope the adaptive thresholding method, which is multilevel thresholding. The thresholding value is varied according to the mean graylevel value of each test image. To investigate the performance of the proposed algorithm, we classified the detected defect using neural network. The test image is 20 defect images captured at German Sick Co. This algorithm is proved to have good property in cold mill strip surface inspection.

  • PDF

Recognition of Resident Registration Card using ART2-based RBF Network and face Verification (ART2 기반 RBF 네트워크와 얼굴 인증을 이용한 주민등록증 인식)

  • Kim Kwang-Baek;Kim Young-Ju
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 2006
  • In Korea, a resident registration card has various personal information such as a present address, a resident registration number, a face picture and a fingerprint. A plastic-type resident card currently used is easy to forge or alter and tricks of forgery grow to be high-degree as time goes on. So, whether a resident card is forged or not is difficult to judge by only an examination with the naked eye. This paper proposed an automatic recognition method of a resident card which recognizes a resident registration number by using a refined ART2-based RBF network newly proposed and authenticates a face picture by a template image matching method. The proposed method, first, extracts areas including a resident registration number and the date of issue from a resident card image by applying Sobel masking, median filtering and horizontal smearing operations to the image in turn. To improve the extraction of individual codes from extracted areas, the original image is binarized by using a high-frequency passing filter and CDM masking is applied to the binaried image fur making image information of individual codes better. Lastly, individual codes, which are targets of recognition, are extracted by applying 4-directional contour tracking algorithm to extracted areas in the binarized image. And this paper proposed a refined ART2-based RBF network to recognize individual codes, which applies ART2 as the loaming structure of the middle layer and dynamicaly adjusts a teaming rate in the teaming of the middle and the output layers by using a fuzzy control method to improve the performance of teaming. Also, for the precise judgement of forgey of a resident card, the proposed method supports a face authentication by using a face template database and a template image matching method. For performance evaluation of the proposed method, this paper maked metamorphoses of an original image of resident card such as a forgey of face picture, an addition of noise, variations of contrast variations of intensity and image blurring, and applied these images with original images to experiments. The results of experiment showed that the proposed method is excellent in the recognition of individual codes and the face authentication fur the automatic recognition of a resident card.

  • PDF

Recognition of Passports using Enhanced Neural Networks and Photo Authentication (개선된 신경망과 사진 인증을 이용한 여권 인식)

  • Kim Kwang-Baek;Park Hyun-Jung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.983-989
    • /
    • 2006
  • Current emigration and immigration control inspects passports by the naked eye, registers them by manual input, and compares them with items of database. In this paper, we propose the method to recognize information codes of passports. The proposed passport recognition method extracts character-rows of information codes by applying sobel operator, horizontal smearing, and contour tracking algorithm. The extracted letter-row regions is binarized. After a CDM mask is applied to them in order to recover the individual codes, the individual codes are extracted by applying vertical smearing. The recognizing of individual codes is performed by the RBF network whose hidden layer is applied by ART 2 algorithm and whose learning between the hidden layer and the output layer is applied by a generalized delta learning method. After a photo region is extracted from the reference of the starting point of the extracted character-rows of information codes, that region is verified by the information of luminance, edge, and hue. The verified photo region is certified by the classified features by the ART 2 algorithm. The comparing experiment with real passport images confirmed the good performance of the proposed method.

Machine-printed Numeral Recognition using Weighted Template Matching with Chain Code Trimming (체인 코드 트리밍과 가중 원형 정합을 이용한 인쇄체 숫자 인식)

  • Jung, Min-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.4
    • /
    • pp.35-44
    • /
    • 2007
  • This paper proposes a new method of weighted template matching for machine-printed numeral recognition. The proposed weighted template matching, which emphasizes the feature of a pattern using adaptive Hamming distance on local feature areas, improves the recognition rate while template matching processes an input image as one global feature. Template matching is vulnerable to random noises that generate ragged outlines of a pattern when it is binarized. This paper offers a method of chain code trimming in order to remove ragged outlines. The method corrects specific chain codes within the chain codes of the inner and the outer contour of a pattern. The experiment compares confusion matrices of both the template matching and the proposed weighted template matching with chain code trimming. The result shows that the proposed method improves fairly the recognition rate of the machine-printed numerals.

  • PDF

Performance Improvement of a Movie Recommendation System using Genre-wise Collaborative Filtering (장르별 협업필터링을 이용한 영화 추천 시스템의 성능 향상)

  • Lee, Jae-Sik;Park, Seog-Du
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.4
    • /
    • pp.65-78
    • /
    • 2007
  • This paper proposes a new method of weighted template matching for machine-printed numeral recognition. The proposed weighted template matching, which emphasizes the feature of a pattern using adaptive Hamming distance on local feature areas, improves the recognition rate while template matching processes an input image as one global feature. Template matching is vulnerable to random noises that generate ragged outlines of a pattern when it is binarized. This paper offers a method of chain code trimming in order to remove ragged outlines. The method corrects specific chain codes within the chain codes of the inner and the outer contour of a pattern. The experiment compares confusion matrices of both the template matching and the proposed weighted template matching with chain code trimming. The result shows that the proposed method improves fairly the recognition rate of the machine-printed numerals.

  • PDF

Extraction of Blood Flow of Brachial Artery on Color Doppler Ultrasonography by Using 4-Directional Contour Tracking and K-Means Algorithm (4 방향 윤곽선 추적과 K-Means 알고리즘을 이용한 색조 도플러 초음파 영상에서 상환 동맥의 혈류 영역 추출)

  • Park, Joonsung;Kim, Kwang Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1411-1416
    • /
    • 2020
  • In this paper, we propose a method of extraction analysis of blood flow area on color doppler ultrasonography by using 4-directional contour tracking and K-Means algorithm. In the proposed method, ROI is extracted and a binarization method with maximum contrast as a threshold is applied to the extracted ROI. 4-directional contour algorithm is applied to extract the trapezoid shaped region which has blood flow area of brachial artery from the binarized ROI. K-Means based quantization is then applied to accurately extract the blood flow area of brachial artery from the trapezoid shaped region. In experiment, the proposed method successfully extracts the target area in 28 out of 30 cases (93.3%) with field expert's verification. And comparison analysis of proposed K-Means based blood flow area extraction on 30 color doppler ultrasonography and brachial artery blood flow ultrasonography provided by a specialist yielded a result of 94.27% accuracy on average.

Comparative Performance Evaluation of Binarization Methods for Vehicle License Plate (자동차 번호판 이진화 방법에 대한 성능 비교)

  • Kim, Min-Ki
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.8
    • /
    • pp.9-17
    • /
    • 2009
  • License plate recognition is an active research area. but few comparative studies on license plate binarization have been conducted. Many related researchers have experienced similar trial and error for finding an effective binarization method. To reduce this trial and error, this study implemented some binarization methods and quantitatively compared the performance of the methods. The performance evaluation consists of a low level measure and a high level measure, so it can evaluate not only the quality of binarized image itself but also the usefulness of the result. The performance evaluation was separately performed with three groups of images so as to understand the properties of the binarization methods. Experimental results show that the quality of binarization is more dependent on the evenness of illumination than the intensity of illumination. The Otsu's method has acquired the most effective performance in the group of even illumination images and the Niblack's method with parameter correction has shown the best quality in the group of uneven illumination images.

Text Region Detection Method in Mobile Phone Video (휴대전화 동영상에서의 문자 영역 검출 방법)

  • Lee, Hoon-Jae;Sull, Sang-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.192-198
    • /
    • 2010
  • With the popularization of the mobile phone with a built-in camera, there are a lot of effort to provide useful information to users by detecting and recognizing the text in the video which is captured by the camera in mobile phone, and there is a need to detect the text regions in such mobile phone video. In this paper, we propose a method to detect the text regions in the mobile phone video. We employ morphological operation as a preprocessing and obtain binarized image using modified k-means clustering. After that, candidate text regions are obtained by applying connected component analysis and general text characteristic analysis. In addition, we increase the precision of the text detection by examining the frequency of the candidate regions. Experimental results show that the proposed method detects the text regions in the mobile phone video with high precision and recall.