• Title/Summary/Keyword: binarized method

Search Result 74, Processing Time 0.024 seconds

Passport Recognition using Fuzzy Binarization and Enhanced Fuzzy RBF Network

  • Kim, Kwang-Baek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.222-227
    • /
    • 2004
  • Today, an automatic and accurate processing using computer is essential because of the rapid increase of travelers. The determination of forged passports plays an important role in the immigration control system. Hence, as the preprocessing phase for the determination of forged passports, this paper proposes a novel method for the recognition of passports based on the fuzzy binarization and the fuzzy RBF network. First, for the extraction of individual codes for recognizing, this paper targets code sequence blocks including individual codes by applying Sobel masking, horizontal smearing and a contour tracking algorithm on the passport image. Then the proposed method binarizes the extracted blocks using fuzzy binarization based on the trapezoid type membership function. Then, as the last step, individual codes are recovered and extracted from the binarized areas by applying CDM masking and vertical smearing. This paper also proposes an enhanced fuzzy RBF network that adapts the enhanced fuzzy ART network for the middle layer. This network is applied to the recognition of individual codes. The results of the experiments for performance evaluation on the real passport images showed that the proposed method has the better performance compared with other approaches.

Hierarchical Nearest-Neighbor Method for Decision of Segment Fitness (세그먼트 적합성 판단을 위한 계층적 최근접 검색 기법)

  • Shin, Bok-Suk;Cha, Eui-Young;Lee, Im-Geun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.418-421
    • /
    • 2007
  • In this paper, we proposed a hierarchical nearest-neighbor searching method for deciding fitness of a clustered segment. It is difficult to distinguish the difference between correct spots and atypical noisy spots in footprint patterns. Therefore we could not completely remove unsuitable noisy spots from binarized image in image preprocessing stage or clustering stage. As a preprocessing stage for recognition of insect footprints, this method decides whether a segment is suitable or not, using degree of clustered segment fitness, and then unsuitable segments are eliminated from patterns. Removing unsuitable segments can improve performance of feature extraction for recognition of inset footprints.

  • PDF

Recognition of the Passport by Using Fuzzy Binarization and Enhanced Fuzzy Neural Networks

  • Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.603-607
    • /
    • 2003
  • The judgment of forged passports plays an important role in the immigration control system, for which the automatic and accurate processing is required because of the rapid increase of travelers. So, as the preprocessing phase for the judgment of forged passports, this paper proposed the novel method for the recognition of passport based on the fuzzy binarization and the fuzzy RBF neural network newly proposed. first, for the extraction of individual codes being recognized, the paper extracts code sequence blocks including individual codes by applying the Sobel masking, the horizontal smearing and the contour tracking algorithm in turn to the passport image, binarizes the extracted blocks by using the fuzzy binarization based on the membership function of trapezoid type, and, as the last step, recovers and extracts individual codes from the binarized areas by applying the CDM masking and the vertical smearing. Next, the paper proposed the enhanced fuzzy RBF neural network that adapts the enhanced fuzzy ART network to the middle layer and applied to the recognition of individual codes. The results of the experiment for performance evaluation on the real passport images showed that the proposed method in the paper has the improved performance in the recognition of passport.

  • PDF

A Fast Algorithm for Korean Text Extraction and Segmentation from Subway Signboard Images Utilizing Smartphone Sensors

  • Milevskiy, Igor;Ha, Jin-Young
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.3
    • /
    • pp.161-166
    • /
    • 2011
  • We present a fast algorithm for Korean text extraction and segmentation from subway signboards using smart phone sensors in order to minimize computational time and memory usage. The algorithm can be used as preprocessing steps for optical character recognition (OCR): binarization, text location, and segmentation. An image of a signboard captured by smart phone camera while holding smart phone by an arbitrary angle is rotated by the detected angle, as if the image was taken by holding a smart phone horizontally. Binarization is only performed once on the subset of connected components instead of the whole image area, resulting in a large reduction in computational time. Text location is guided by user's marker-line placed over the region of interest in binarized image via smart phone touch screen. Then, text segmentation utilizes the data of connected components received in the binarization step, and cuts the string into individual images for designated characters. The resulting data could be used as OCR input, hence solving the most difficult part of OCR on text area included in natural scene images. The experimental results showed that the binarization algorithm of our method is 3.5 and 3.7 times faster than Niblack and Sauvola adaptive-thresholding algorithms, respectively. In addition, our method achieved better quality than other methods.

Classification of Man-Made and Natural Object Images in Color Images

  • Park, Chang-Min;Gu, Kyung-Mo;Kim, Sung-Young;Kim, Min-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1657-1664
    • /
    • 2004
  • We propose a method that classifies images into two object types man-made and natural objects. A central object is extracted from each image by using central object extraction method[1] before classification. A central object in an images defined as a set of regions that lies around center of the image and has significant color distribution against its surrounding. We define three measures to classify the object images. The first measure is energy of edge direction histogram. The energy is calculated based on the direction of only non-circular edges. The second measure is an energy difference along directions in Gabor filter dictionary. Maximum and minimum energy along directions in Gabor filter dictionary are selected and the energy difference is computed as the ratio of the maximum to the minimum value. The last one is a shape of an object, which is also represented by Gabor filter dictionary. Gabor filter dictionary for the shape of an object differs from the one for the texture in an object in which the former is computed from a binarized object image. Each measure is combined by using majority rule tin which decisions are made by the majority. A test with 600 images shows a classification accuracy of 86%.

  • PDF

Precise Detection of Car License Plates by Locating Main Characters

  • Lee, Dae-Ho;Choi, Jin-Hyuk
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.376-382
    • /
    • 2010
  • We propose a novel method to precisely detect car license plates by locating main characters, which are printed with large font size. The regions of the main characters are directly detected without detecting the plate region boundaries, so that license regions can be detected more precisely than by other existing methods. To generate a binary image, multiple thresholds are applied, and segmented regions are selected from multiple binarized images by a criterion of size and compactness. We do not employ any character matching methods, so that many candidates for main character groups are detected; thus, we use a neural network to reject non-main character groups from the candidates. The relation of the character regions and the intensity statistics are used as the input to the neural network for classification. The detection performance has been investigated on real images captured under various illumination conditions for 1000 vehicles. 980 plates were correctly detected, and almost all non-detected plates were so stained that their characters could not be isolated for character recognition. In addition, the processing time is fast enough for a commercial automatic license plate recognition system. Therefore, the proposed method can be used for recognition systems with high performance and fast processing.

Evaluation of Histograms Local Features and Dimensionality Reduction for 3D Face Verification

  • Ammar, Chouchane;Mebarka, Belahcene;Abdelmalik, Ouamane;Salah, Bourennane
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.468-488
    • /
    • 2016
  • The paper proposes a novel framework for 3D face verification using dimensionality reduction based on highly distinctive local features in the presence of illumination and expression variations. The histograms of efficient local descriptors are used to represent distinctively the facial images. For this purpose, different local descriptors are evaluated, Local Binary Patterns (LBP), Three-Patch Local Binary Patterns (TPLBP), Four-Patch Local Binary Patterns (FPLBP), Binarized Statistical Image Features (BSIF) and Local Phase Quantization (LPQ). Furthermore, experiments on the combinations of the four local descriptors at feature level using simply histograms concatenation are provided. The performance of the proposed approach is evaluated with different dimensionality reduction algorithms: Principal Component Analysis (PCA), Orthogonal Locality Preserving Projection (OLPP) and the combined PCA+EFM (Enhanced Fisher linear discriminate Model). Finally, multi-class Support Vector Machine (SVM) is used as a classifier to carry out the verification between imposters and customers. The proposed method has been tested on CASIA-3D face database and the experimental results show that our method achieves a high verification performance.

Estimation of Moving Direction of Objects for Vehicle Tracking in Underground Parking Lot (지하 주차장 차량 추적을 위한 객체의 이동 방향 추정)

  • Nguyen, Huu Thang;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.305-311
    • /
    • 2021
  • One of the highly reliable object tracking methods is to trace objects by associating objects detected by deep learning. The detected object is represented by a rectangular box. The box has information such as location and size. Since the tracker has motion information of the object in addition to the location and size, knowing additional information about the motion of the detected box can increase the reliability of object tracking. In this paper, we present a new method of reliably estimating the moving direction of the detected object in underground parking lot. First, the frame difference image is binarized for detecting motion energy, change due to the object motion. Then, a cumulative binary image is generated that shows how the motion energy changes over time. Next, the moving direction of the detected box is estimated from the accumulated image. We use a new cost function to accurately estimate the direction of movement of the detected box. The proposed method proves its performance through comparative experiments of the existing methods.

A Technique for Image Processing of Concrete Surface Cracks (콘크리트 표면 균열의 영상 처리 기법)

  • Kim Kwang-Baek;Cho Jae-Hyun;Ahn Sang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1575-1581
    • /
    • 2005
  • Recently, further study is being done on the affect of crack on concrete structure and many people have made every endeavor not to leave it unsettled but to minimize it by repair works. In this paper we propose the image processing method that do not remain manual but automatically process the length, the direction and e width of cracks on concrete surface. First, we calibrate light's affect from image by using closing operation, one of morphology methods that can extract the feature of oracle and we extract the edge of crack image by sobel mask. After it, crack image is binarized by iteration binarization. And we extract the edge of cracks using noise elimination method that use an average of adjacent pixels by 3${\times}$3 mask and Glassfire Labeling algorithm. on, in this paper we propose an image processing method which can automatically measure the length, the direction and the width of cracks using the extracted edges of cracks. The results of experiment showed that the proposed method works better on the extraction of concrete cracks. Also our method showed the possibility that inspector's decision is unnecessary.

Application of computer vision for rapid measurement of seed germination

  • Tran, Quoc Huy;Wakholi, Collins;Cho, Byoung-Kwan
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.154-154
    • /
    • 2017
  • Root is an important organ of plant that typically lies below the surface of the soil. Root surface determines the ability of plants to absorb nutrient and water from the surrounding soil. This study describes an application of image processing and computer vision which was implemented for rapid measurement of seed germination such as root length, surface area, average diameter, branching points of roots. A CCD camera was used to obtain RGB image of seed germination which have been planted by wet paper in a humidity chamber. Temperature was controlled at approximately 250C and 90% relative humidity. Pre-processing techniques such as color space, binarized image by customized threshold, removal noise, dilation, skeleton method were applied to the obtained images for root segmentation. The various morphological parameters of roots were estimated from a root skeleton image with the accuracy of 95% and the speed of within 10 seconds. These results demonstrated the high potential of computer vision technique for the measurement of seed germination.

  • PDF