• Title/Summary/Keyword: bilobalide and ginkgolide

Search Result 7, Processing Time 0.027 seconds

Antifungal Effect of Bilobalide and Ginkgolide Extracted from Leaves of Ginkgo biloba Against Pityrosporum ovale (비듬유발균 (Pityrosporum ovale) 에 대한 은행잎으로부터 추출한 Ginkgolide 및 Bilobalide의 항진균 효과)

  • Lee, In-Hwa;Kim, Mi-Jin;Choi, Jun-Ho;Kim, Chi-Hyun;Choi, Seung-Hyun
    • KSBB Journal
    • /
    • v.25 no.2
    • /
    • pp.173-178
    • /
    • 2010
  • Antifungal effect of Ginkgo biloba leaves extracts conducted for Pityrosporum ovale. Antifungal effect verified by diffusion test, optical density test and colony counting test under various concentration. Extract of ginkgo biloba leaves performed with 40% ethanol and 60% water solution at $60^{\circ}C$ and major components analyzed by HPLC. The concentrated extract have bilobalide and ginkgolide A and ginkgolide B and their concentration were 153.0 mg/L, 8403.5 mg/L and 2723.0 mg/L respectively. Ginkgo biloba leaves extracts gave 99.1% of antifungal effect for Pityrosporum ovale examined by colony counting method.

Repellent and Pesticidal Effect of Ginkgo biloba Leaves Extracts on the Tetranichus urticae, Aphis gossypii and Myzus persicae (점박이응애(Tetranichus urticae), 목화진딧물(Aphis gossypii)과 복숭아혹진딧물(Myzus persicae)에 대한 은행잎 추출물의 살충 및 기피효과)

  • Lee, In-Hwa;Seol, Myung-Su;Park, Jong-Dae
    • Applied Biological Chemistry
    • /
    • v.48 no.2
    • /
    • pp.150-154
    • /
    • 2005
  • To overcome the problems associated with chemical pesticides, biological pest controls agent extracted from Ginkgo biloba was studied. Insecticidal activities components in Ginkgo biloba extracts were analyzed using high performance liquid chromatography (HPLC). This results of HPLC analysis, GG-W80 were included bilobalide $611\;{\mu}g/kg$, ginkgolide A $37\;{\mu}g/kg$ and ginkgolide B $243\;{\mu}g/kg$, while YG-W80 were included bilobalide $214\;{\mu}g/kg$ and ginkgolide B $46\;{\mu}g/kg$. The biological activity of Ginkgo biloba extracts were conducted to repellent and pesticidial effect of Tetranichus urticae, Aphis gossypii and Myzus persicae treated with Ginkgo biloba leaves extracts. Mortalities of adult T. urticae to green Ginkgo biloba extracts (GG-W80) and yellow Ginkgo biloba extracts (YG-W80) were shown 98.3% and 20.0%, respectively. From these results, terpenes components in Ginkgo biloba extracts could be use for biological controls for T. urticae.

Insecticidal Activities of Bilobalide from Ginkgo biloba Leaves and its Derivatives (은행잎 유래 살충성분 bilobalide와 그 분해물의 살충활성)

  • Yang, Eun-Young;Hong, Su-Myeong;Ahn, Young-Joon;Kwon, Oh-Kyung
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.1
    • /
    • pp.24-29
    • /
    • 2001
  • This study was conducted to investigate insecticidal activities of Ginkgo biloba (L.) leaves-derived bilobalide and its hydrolysis and oxidation products against adults of Nilaparavata lugens Stal. To find out active insecticidal moiety of bilobalide, decomposed intermediates and derivatives of bilobalide were made by hydrolysis, oxidation, and acetylation. The structures of hydrolysis product by base and oxidation product by acid were identified as cyclopentenone analogues and trilactone sesquiterpene from dehydration of bilobalide, respectively. Insecticidal activities of the decomposed intermediates and the derivatives of bilobalide decreased in the order of bilobalide, monoacetate, ginkgolide C, oxidation product, diacetate, and hydrolysis product. Therefore, trilactone structure of bilobalide may be essential for its insecticidal activity.

  • PDF

A Study on the Antimicrobial Effect of Ginkgo biloba Leaves Extracts according to Concentrations of Ethanol for staphylococcus aureus (포도상구균에 대만 에탄올 농도별 은행잎 추출물의 항균효과에 관한 연구)

  • Lee, In-Hwa;Shim, Youn;Choi, Seung-Hyun;Park, Ju-Young;Han, Sung-Woo;Song, Jn-Young;Yoon, Suk-Jin
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.312-316
    • /
    • 2006
  • A optimal condition for the Ginkgo biloba extraction in ethanol and water binary solvent system has been proposed based on concentration of bilobalide and ginkgolide known as having a antimicrobial components in the range 5% to 70% ethanol in water at $80^{\circ}C$. Concentration of bilobalide as a single component of Ginkgo biloba leaves extract is the highest at the 60% ethanol and ginkgolide A and B is highest at 50% ethanol. Antimicrobial effect of Ginkgo biloba leaves extracts on the S. aureus was also examined by disc diffusion test and optical density test. In case of the disc diffusion test, the clean zone diameter was increased from 0.95 cm to 1.70 cm as ethanol concentration increased from 5 to 70%. However, over the 40% of ethanol concentration the antimicrobial effect was almost flat. Based on these results, we propose that the 40% of ethanol and 60% water solvent is most desirable for Ginkgo biloba extract considering vapor pressure problem in concentrating process after extraction. We introduced SEM and TEM to figure out the morphological change on the surface and inside body of S. aureus when Ginkgo biloba leaves extract was treated. After mixed with Ginkgo biloba leaves extract blast like blebs appeared on the surface of S. aureus cells and cell wall was not observed. From the these results, it seems that the Ginkgo biloba leaves extract including bilobalide and ginkgolide A, B prevent cell wall synthesis.

Insecticidal Effect of Dermatoohagoides pteronyssinus using Ginkgo biloba Leaves Extracts (은행잎 추출물의 집먼지 진드기 Dermatophagoides pteronyssinus에 대한 살충효과)

  • Lee, In-Hwa;Park, Ju-Young;Choi, Seung-Hyun
    • KSBB Journal
    • /
    • v.22 no.1
    • /
    • pp.58-61
    • /
    • 2007
  • A Insecticidal effect of Ginkgo biloba leaves extract was conducted for Dermatophagoides pteronyssinus as a predominant species in korea. D. pteronyssinus has been cultured in constant temperature and humidity chamber at the 25$^{\circ}C$ and 75% of relative humidity. The mortality of mites was determined by counting the dead bodies for every hour within 48 hours with pin hall microscope after treated by Ginkgo biloba leaves extract spreaded on 0.1 g of mass cultured media. The sequence of mortality for D. pteronyssinus are as follows, bilobalide was 91.6%, 80$^{\circ}C$ water extract was 82.8%, second water fraction was 75%, ethyl acetate fraction from 80$^{\circ}C$ water fraction was 73%, first ethyl acetate fraction from 80$^{\circ}C$ water extract was 69.4%, putaltrin was 65%, distilled water was 58%, methanol extract was 57.8%, Ginkgolide-A was 57.1 %, ethyl acetate fraction of 80$^{\circ}C$ water extract was 55%, respectively. From the these results we conclude that the bilobalide is the most effective component in the Ginkgo biloba leaves extract having insecticidal effect on house dust mite.

Preparation of Bio-oil from Ginkgo Leaves through Fast Pyrolysis and its Properties (은행잎 바이오매스로부터 급속 열분해를 통한 바이오-오일 생산 및 특성 연구)

  • In-Jun Hwang;Jae-Rak Jeon;Jinsoo Kim;Seung-Soo Kim
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.200-216
    • /
    • 2023
  • Ginkgo leaves are considered waste biomass and can cause problems due to the strong insecticidal actions of ginkgolide A, B, C, and J and bilobalide. However, Ginkgo leaf biomass has high organic matter content that can be converted into fuels and chemicals if suitable technologies can be developed. In this study, the effect of pyrolysis temperature, minimum fluidized velocity, and Ginkgo leaf size on product yields and product properties were systematically analyzed. Fast pyrolysis was conducted in a bubbling fluidized bed reactor at 400 to 550℃ using silica sand as a bed material. The yield of pyrolysis liquids ranged from 33.66 to 40.01 wt%. The CO2 and CO contents were relatively high compared to light hydrocarbon gases because of decarboxylation and decarbonylation during pyrolysis. The CO content increased with the pyrolysis temperature while the CO2 content decreased. When the experiment was conducted at 450℃ with a 3.0×Umf fluidized velocity and a 0.43 to 0.71 mm particle size, the yield was 40.01 wt% and there was a heating value of 30.17 MJ/kg, respectively. The production of various phenol compounds and benzene derivatives in the bio-oil, which contains the high value products, was identified using GC-MS. This study demonstrated that fast pyrolysis is very robust and can be used for converting Ginkgo leaves into fuels and thus has the potential of becoming a method for waste recycling.

In Vitro Peroxynitrite Scavenging Activity of 6-Hydroxykynurenic Acid and Other Flavonoids from Gingko biloba Yellow Leaves

  • Hyun, Sook-Kyung;Jung, Hyun-Ah;Chung, Hae-Young;Choi, Jae-Sue
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1074-1079
    • /
    • 2006
  • As part of our research on phytochemicals that exert protective effects against diseases related to reactive nitrogen species, we have evaluated the scavenging activity of the yellow leaves of Ginkgo biloba on $ONOO^{-}$. The methanol extract and ethyl acetate fraction obtained from yellow leaves of G. biloba evidenced a marked scavenging activity on authentic $ONOO^{-}$. Repeated column chromatography of the active ethyl acetate soluble fraction on silica gel, Sephadex LH-20, and RP-18, resulted in the purification of 15 known compounds, including sciadopitysin (1), ginkgolide B (2), bilobalide (3), isoginkgetin (4), kaempferol (5), luteolin (6), protocatechuic acid (7), bilobetin (8), amentoflavone (9), ${\beta}-sitosterol$ glucopyranoside (10), kaempferol 3-O-rhamnopyranoside (11), kaempferol 3-O-glucopyranoside (12), kaempferol $3-O-[{6^{'}-O-p-coumaroyl-{\beta}-D-glucopyranosyl(1{\rightarrow}2)-{\alpha}-L-rhamnopyranoside]$ (13), kaempferol 3-O-rutinoside (14), and 6-hydroxykynurenic acid (15). Among the compounds isolated, flavonoids (5, 6 and 11-14), protocatechuic acid (7), and 6-hydroxykynurenic acid (15) all exhibited marked scavenging activities on authentic $ONOO^{-}$. The $IC_{50}$ values of 5-7, 11-14 and 15 were as follows: $2.86{\pm}0.70,\;2.30{\pm}0.04,\;2.85{\pm}0.10,\;5.60{\pm}0.47,\;4.16{\pm}1.65,\;2.47{\pm}0.15,\;3.02{\pm}0.48,\;and\;6.24{\pm}0.27\;{\mu}M$, respectively. DL-Penicillamine ($IC_{50}=4.98{\pm}0.27\;{\mu}M$) was utilized as a positive control. However, the other compounds (1-4, 8-10) exerted no effects against $ONOO^{-}$.