• Title/Summary/Keyword: bilge vortex

Search Result 6, Processing Time 0.018 seconds

PIV Velocity Field Measurements of Flow around a Ship with Rotating Propeller (PIV를 이용한 선박 프로펠러 후류의 속도장 계측)

  • 이상준;백부근
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.5
    • /
    • pp.17-25
    • /
    • 2003
  • Velocity field behind a container ship model with a rotating propeller has been investigated using PIV (particle image velocimetry) system. Four hundred instantaneous velocity fields were measured at 4 different blade phases and ensemble-averaged to investigate the spatial evolution of vortical structure of near wake within one propeller diameter downstream. The phase-averaged mean velocity fields show the potential wake and the viscous wake formed due to the boundary layers developed on the blade surfaces. The interaction between bilge vortex developed along the hull surface and the tangential velocity component of incoming flow causes to have asymmetric flow structure in the transverse plane.

PIV Measurements of Hull Wake behind a Container Ship Model with Varying Loading Condition and Reynolds number (선박 모형의 하중 (loading)조건 및 Reynolds 수의 변화에 따른 선미 반류의 PIV 속도장 측정)

  • Lee Jung-Yeop;Paik Bu-Geun;Lee Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.54-57
    • /
    • 2005
  • Flow characteristics of hull wake behind a container ship model were investigated experimentally with varying loading condition and Reynolds number. Large-scale bilge vortices of nearly the same strength are formed in the near-wake region. They are symmetric and counter-rotating with respect to the wake centerline for all loading conditions tested. With going downstream for both design and ballast loading conditions, the strength of the bilge vortices decreases and the wake region expands due to diffusion and viscous dissipation. Under the design loading condition, the bilge vortices start to appear at St=0.363 transverse plane above the propeller-boss. For the ballast loading condition, however, the bilge vortices start to appear at St=0.591 below the propeller-boss. They move upward as the hull wake goes downstream and Reynolds number increases. These wake characteristics, under the ballast loading condition, may weaken the propulsion and cavitation performances of the propeller, which are usually optimized for the design loading condition.

  • PDF

A Study on Velocity Distribution Around Ship Stern by Improved Power Law Flow Model (멱법칙 유동모델의 개선에 의한 선미 유동장내 속도분포 연구)

  • 김시영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1391-1397
    • /
    • 1992
  • Improved power law flow model was suggested for the calculation of wake flow characteristics around the three dimensional ship stern in case of the formation of bilge vortex in the direction of stern. In comparison with the power law and Coles flow model, the flow velocity calculated based on this study was delayed around the boundary of inner layer and outer layer in reverse flow. More accurate results was obtained with this improved power law flow model by the velocity calculation around ship stern. Accuracy was validated with the comparison of other calculation results and experimental datas.

Numerical Analysis on Hydrodynamic Forces Acting on Side-by-Side Arranged Two-Dimensional Floating Bodies in Viscous Flows (점성유동장에 병렬배치된 2차원 부유체에 작용하는 유체력에 관한 수치해석)

  • Heo, Jae-Kyung;Park, Jong-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.5
    • /
    • pp.425-432
    • /
    • 2012
  • Viscous flow fields of side-by-side arranged two-dimensional floating bodies are numerically simulated by a Navier-Stokes equation solver. Two identical bodies with a narrow gap are forced to heave and sway motions. Square and rounded bilge hull forms are compared to find out the effects of vortex shedding on damping force. Wave height, force RAOs, added mass and damping coefficients including non-diagonal cross coefficients are calculated and a similarity between the wave height and force RAOs is discussed. CFD which can take into account of viscous damping and vortex shedding shows better results than linear potential theory.

Experimental Study on Local Flow Characteristics and Propulsive Performance of Two KRISO 300K VLCCs with Different Stern Shapes (선미선형을 변화시킨 두 척의 KRISO 300K VLCC 모형주위의 유동과 저항추진 특성에 대한 실험적 연구)

  • Wu-Joan Kim;Suak-Ho Van;Do-Hyun Kim;Chun-Ju Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.11-20
    • /
    • 2000
  • The flow characteristics around the stern region of two VLCCs with the same forebody and slightly different afterbody are investigated along with propulsive performance of the ship. The local mean flow measurements and the resistance and self-propulsion tests are carried out in the towing tank for the two VLCC hull forms. The measured results clearly show the formation of bilge vortices and their effect on propulsive efficiency. The comparisons are made for the two VLCC hull forms and the relation between stern framelines and bilge vortex strength is explored. Experimental data can provide a good test case to validate the accuracy of numerical methods and turbulence model of CFD codes for ship flow calculation.

  • PDF

A Study on the Resistance Performance and Flow Characteristic of Ship with a Fin Attached on Stern Hull (선박 선미부 핀 부착에 의한 저항성능 및 유동 특성에 관한 연구)

  • Lee, Jonghyeon;Kim, Inseob;Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1106-1115
    • /
    • 2021
  • In this study, a fin that controls ship stern flow was attached on stern hull of a 80k bulk carrier to improve resistance performance. The rectangular cross-sectional fin was attached at several locations on the hull, and angle to streamline was changed with constant length, breadth, and thickness. The resistance performance and wake on propeller plane of the hull with and without the fin were analyzed using model-scale computational fluid dynamics simulation. The analysis results were extrapolated to full-scale to compare the performance and wake of the full-scale ship. First, the fin changed path of bilge vortex that flowed into the propeller along the stern hull without the fin to transom stern. This change increased pressure of the stern hull and upper region of the propeller, so pressure resistance and total resistance of the hull were reduced - the nearer the fin location to after perpendicular (AP) and base line of the hull, the larger the reduction of the resistances. Second, nominal wake fraction of the hull with the fin was lower than that without the fin. This dif erence was in proportion to the angle of the fin, but the total resistance reduction was in proportion until a certain angle at which the reduction was maximum. The largest total resistance reduction was approximately 2.1% at 12.5% of length between perpendiculars from the AP, 10% of draft from the base line, and 14° with respect to the streamline.