• Title/Summary/Keyword: bilayer

Search Result 510, Processing Time 0.028 seconds

Stacked Bilayer Helices: A New Structural Organization of Amphiphilic Molecules

  • Boettcher, Christoph;Stark, Holger;van Heel, Maarin
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.04a
    • /
    • pp.16-20
    • /
    • 1995
  • The spontaneous self-organization of amphiphilic molecules into complex aggregates was undoubtedly an important factor in the emergence of life on earth. We study the parameters governing the self-organization of a simple amphiphilic model system using electron cryomicroscopy of ice-embedded specimens in combination with extensive data analysis. Different stable helices can be generated reproducibly by changing the parameters controlling the molecular aggregation process. The repeating units of the helical aggregates in the micrographs can be found by multivariate statistical image analysis techniques, and these two-dimensional projection images suffice for calculating the three-dimensional density distribution of the fibers. We present a typical structure consisting of a narrow stack of compartmented bilayers twisted into a left-handed helix. Our new techniques directly elucidate the three-dimensional structure of helical assemblies, and can complement or replace diffraction-based approaches.

  • PDF

Second Harmonic Generation study on the transport dynamics of small molecules across liposome bilayers

  • Kim, Joon-Heon;Kim, Mahn-Won
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.79-79
    • /
    • 2003
  • SHG (Second harmonic generation) can be used to probe the surface of centrosymmetric particles suspended in bulk isotropic solution, because it is forbidden in centrosymmetric media under the dipole approximation. Using this technique, we can study the transport dynamics of small organic dye molecules across liposome bilayers. Because molecules adsorbed on the outer layer are in opposite direction with that on the inner layer by symmetry, the SH field is proportional to the difference between the number density of dye molecules on both sides of the bilayer, and the time dependence of the SH intensity is related to the time constant of the molecular transportation of dye molecules across liposome bilayers.

  • PDF

Home-built Solid-state NMR Probe for Membrane Protein Studies

  • Kim, Yong-Ae;Hwang, Jung-Hyun;Park, Jae-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1281-1283
    • /
    • 2003
  • Proteins in highly oriented lipid bilayer samples are useful to study membrane protein structure determination. Planar lipid bilayers aligned and supported on glass slide were prepared. These stack of glass slide with planar lipid bilayers are not well fit for commercial solid-state NMR probe with round coil. Therefore, homebuilt solid-state NMR probe was built and used for a stack of thin glass plates and RF coil is wrapping directly around the flat square sample. The overall filling factor of the coil is much better and the large surface area enhances the extent to orientation by providing uniform environments for the phospholipids and the high ratio of circumference to area reduces edge effects. $^1H\;and\;^{15}N$ double resonance probe for 400 MHz NMR (9.4T) with a flat coil (coil size: 11 mm ${\times}$ 20 mm ${\times}$ 4 mm) is constructed and tested.

Finite Element Study on the Micro-cavity Effect in OLED Devices

  • Lee, Hyeongi;Hwang, Youngwook;Won, Taeyoung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.23-28
    • /
    • 2014
  • In this paper, we discuss on the optimal design scheme of the bilayer OLED (Organic Light Emitting Diodes) with micro-cavity structure. We carried out the optical simulation on the OLED device and calculated optimal scale of devices with taking the micro-cavity effect into account. Our emission model is based upon an ensemble of radiating dipole antennas. Consequently, we applied Maxwell's equation to this sequence, followed by the analysis on the electrical behaviors of OLED device using Poisson's equation. It contains carrier injection and transportation mechanism. In this process, we found out the thickness of each layer can affect the recombination rate at the emission layer. Therefore, we optimized the thickness of each layer to improve the efficiency of the device.

A Study on Geometric Shape of Nanospring using Finite Element Method (유한요소법을 사용한 나노스프링의 기하학적 형상에 관한 연구)

  • Kim, Seong-Seop;Kim, Won-Bae;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.562-565
    • /
    • 2010
  • 본 논문에서는 유한요소법을 이용하여 두 개의 층으로 이루어진 Si/SiGe 나노스프링의 기하학적 형상에 대한 연구가 수행된다. 나노스프링의 기하학적 형상에 영향을 미치는 주 설계요소로는 두께, 폭, 길이, 격자방향 등이 있으며, 두 개의 층으로 이루어진 Si/SiGe 박막이 나노스프링의 형상을 가지게 되는 주원인으로는 두 개의 층 경계면에서 발생하는 misfit strain이 있다. 본 연구에서는 두께, 폭, 길이, 격자방향 등의 설계요소를 변화시켜가면서 mistif strain에 의한 나노스프링의 곡률 변화에 대한 해석 결과가 제시된다. 또한 해석 결과의 검증을 위해 해석해의 결과와 분자동력학 전산모사 결과가 함께 제시된다.

  • PDF

Effect of saltss on the entrapment of calf thymus DNA into liposomes

  • Kim, Chong-Kook;Lee, Beom-Jin
    • Archives of Pharmacal Research
    • /
    • v.10 no.2
    • /
    • pp.110-114
    • /
    • 1987
  • To correlate the conformational changes of DNA (Calf Thymus) with entrapment of DNA into liposomes, the effect of ions ($Na^+$, $Mg^{++}$on the entrapment of calf thymus DNA into liposomes was investigated. The effect of divalent ion ($Mg^{++}$ on the structural changes of DNA indicated by decrease of observed ellipticity at 274 nm and nonspecific binding of DNA to lipid bilayers was greater than monovalent ion ($\Na^+$). But the efficiency of DNA encapsulated was not altered. These results show that entrapment of DNA into liposomes is not due to nonspecific binding and structural changes because of electrostatic forces but to mechanical capture of DNA by the internal aqueous space of liposomes although divalent ion contributes large structural changes and more nonspecific association of DNA with liposomes due to strong charges.

  • PDF

Bilayer Formation and Functional Design of Synthetic Amphiphiles as Biometmbrane Model (생체막 모델로서 합성 양친매성 화합물의 이분자층 형성과 기능성 설계)

  • 김종목
    • Membrane Journal
    • /
    • v.2 no.2
    • /
    • pp.112-121
    • /
    • 1992
  • 최근 십여년동안 자원, 에너지, 환경의 모든 면에서 기능성막의 역할이 증대해짐에 따라 기능성막에 대해 큰 관심이 모아지고 있다. 기존하는 기능성막의 소재면에서 볼 때 고분자막(고체막), 액체막으로 대별할 수 있으며, 이들의 경우 해수의 담수화, 원료 및 제품의 분리, 농축, 정제, 회수공정 또한 석유화학분야에서 고효율$\cdot$고선택성 기체혼합물 분리, 산업용 폐수처리분야 뿐 만 아니라, 태양에너지의 효과적인 이용, 전도성, 감광성, 광학특성막 등을 이용한 각종 센서제조 등 실로 광범위한 분야에서 응용되어지고 있다. 기능성막의 관점에서 볼 때, 고기능$\cdot$고효율$\cdot$고선택성을 가지는 막은 생태계에 존재하는 생체막이 가장 이상적이라 할 수 있다.

  • PDF

Electrical Characteristics of Ultra-Shallow n+/p Junctions Formed by Using CoSi$_2$ as Diffusion Source of As (CoSi$_2$를 As의 확산원으로 형성한 매우 얇은 n+/p 접합의 전기적 특성)

  • 구본철;정연실;심현상;배규식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.242-245
    • /
    • 1997
  • Co single layer and Co/Ti used to form a CoSi$_2$ contact. We fabricated the n+/p diodes with this CoSi$_2$ contact as diffusion source of As. The diodes wish CoSi$_2$ formed by Co/ri bilayer had more Bo7d electrical characteristics than CoSi$_2$ formed by Co single layer. This shows that the flatness of interface which is a parameters to affect the diodes\` electrical characteristics. And the electrical characteristics of diodes are more good when the second thermal activation processing temperature was low as much as 50$0^{\circ}C$ than the temperature high over than 80$0^{\circ}C$, it was thought as that the silicide was degradated at high temperature.

  • PDF

Membrane Penetration and Translocation of Nanoparticles

  • Sin, Dong-Ju;Hyeon, Jeong-In;Sim, Eun-Ji
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.139-151
    • /
    • 2013
  • Understanding interactions between nanoparticles and lipid bilayer membranes is of great importance due to the potential applications in bio-nanotechnology such as drug deliveries, carrying genes, and utilization of integral membrane proteins. To investigate the dynamics of nanoparticle penetration and translocation into membranes, we performed dissipative particle dynamics simulations which use simple and intuitive coarse-grained models yet effectively describe hydrodynamic interactions in cell environment. We discuss the influence of the shape of nanoparticles as well as the properties of membranes including large membrane-embedded proteins that are found to significantly affect orientation of nanoparticles within membranes and, in turn, the minimum force required to translocate nanoparticles.

  • PDF