• Title/Summary/Keyword: bilayer

Search Result 510, Processing Time 0.024 seconds

Interface Engineering in Superconducting Ultra-thin Film of Ga (Ga 극초박막의 계면특성과 초전도 물성제어에 대한 연구)

  • Lee, Nyun-Jong;Kim, Tae-Hee
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.6
    • /
    • pp.212-215
    • /
    • 2010
  • Spin polarized tunneling studies were carried out with Al-Ga bilayer as a spin detector, by Meservey-Tedrow technique. The superconductor (SC)/Insulator (I)/Ferromagnet (FM) tunnel junctions were provided by ultra high vacuum molecular beam epitaxy (UHV-MBE) technique. The analysis of interfacial properties in the Al-Ga bilayer was also carried out by Auger electron spectroscopy. It was observed that the superconducting transition temperature and energy gap were raised in comparison with that of bulk Ga and pure ultrathin Al films. Current studies clearly show how one can modify the material properties at the interface just with a few monolayers.

A Study on the Coating Fracture in Silicon Nitride Bilayer : II. Effect of Coating Thickness (질화규소 이층 층상재료에서 코팅층의 파괴에 관한 연구 : II Coating Thickness의 영향)

  • 이기성;이승건;김도경
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.1
    • /
    • pp.48-54
    • /
    • 1998
  • The effect of coating thickness on the contact fracture was studied, in Si3N4 coated Si3N4-BN system When the elastic/plastic mismatch is relatively large betwen two layers in bilayer certain critical coating thickness was required to prevent cone crack initiation and this critical thickness was decreased by de-creasing the elastic/plastic mismatch,. In addition the required critical thickness should be increased when higher loads apply. In conclusion an appropriate coating thickness should be designed by elastic/plastic mismatch between two layers and environment (applied load) to prevent the coating fracture

  • PDF

Structural Design and Characterization of a Channel-forming Peptide

  • Krittanai, Chartchai;Panyim, Sakol
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.460-465
    • /
    • 2004
  • A 16-residue polypeptide model with the sequence acetyl-YALSLAATLLKEAASL-OH was derived by rational de novo peptide design. The designed sequence consists of amino acid residues with high propensity to adopt an alpha helical conformation, and sequential order was arranged to produce an amphipathic surface. The designed sequence was chemically synthesized using a solid-phase method and the polypeptide was purified by reverse-phase liquid chromatography. Molecular mass analysis by electro-spray ionization mass spectroscopy confirmed the correct designed sequence. Structural characterization by circular dichroism spectroscopy demonstrated that the peptide adopts the expected alpha helical conformation in 50% acetonitrile solution. Liposome binding assay using Small Unilamellar Vesicle (SUV) showed a marked release of entrapped glucose by interaction between the lipid membrane and the tested peptide. The channel-forming activity of the peptide was revealed by a planar lipid bilayer experiment. An analysis of the conducting current at various applied potentials suggested that the peptide forms a cationic ion channel with an intrinsic conductance of 188 pS. These results demonstrate that a simple rational de novo design can be successfully employed to create short peptides with desired structures and functions.

A Study on SAW Properties of Bilayer Thin Film Structure Composed of ZnO and Dielectric Thin Films (ZnO 박막과 유전체 박막으로 구성된 이중구조의 물성 및 표면 탄성파 특성)

  • 이용의;김형준
    • Korean Journal of Crystallography
    • /
    • v.6 no.2
    • /
    • pp.134-140
    • /
    • 1995
  • SAW properties of SiNx/ZnO bilayer thin film structure were analyzed. ZnO thin films were deposited by rf magnetron sputter using O2 gas as an oxidizer. Structure of ZnO thin films was affected by Ar/O2 ratio. At the gas ratio of Ar/O2=67/33, the standard deviation of X-ray rocking curve of (002) preferred ZnO thin film was 2.17 degree. This value is sufficient to use ZnO thin films as an acoustic element. SAW velocity of glass/SiNx(7000Å)/Al/ZnO(5μm) structure was max. 2.2% faster than that of ZnO/glass.

  • PDF

Effect of Bovine Serum Albumin on the Stability of Methotrexate-encapsulated Liposomes

  • Kim, Chong-Kook;Kim, Han-Sung;Lee, Beum-Jin;Han, Jeong-Hee
    • Archives of Pharmacal Research
    • /
    • v.14 no.4
    • /
    • pp.336-341
    • /
    • 1991
  • The effect of bovine serum albumin (BSA) on the encapsulation efficiency and stability of liposomes containing methotrexate (MTX) having different surface charges and cholesterol contents were investigated. The encapsulation efficiency of MTX was lower and the release of MTX was faster by the addition of BSA. The leaking of MTX from lipid bilayer depends upon the BSA concentrations. These results may be derived from the interaction of BSA with lipid bilayers. The dynamic structural changes of BSA were monitored indirectly using circular dichroism spectra. Observed dynamic structural changes of BSA with liposomes are presumed to reflect the interaction of BSA with liposomes. Negatively charged liposomes have more strong interaction with BSA than neutral and positively charged liposomes. BSA attacks lipid bilayers whether it is at the inner or at the outer phase of lipid bilayer and induces leakage of entrapped MTX. Especially, negatively charged liposomes are more sensitive than others. The inclusion of cholesterol in the lipid layers inhibits the interaction of BSA with liposomes and shows protective effect against BSA-induced leakage of MTX. To endure the attacking of BSA liposomes as drug carriers should be made using cholesterol.

  • PDF

Electrical and Optical Properties of ZnO/$SnO_2$:F Thin Films under the Hydrogen Plasma Exposure (ZnO/$SnO_2$:F 박막의 수소플라즈마 처리에 따른 전기적.광학적 특성 변화)

  • Kang, Gi-Hwan;Song, Jin-Soo;Yoon, Kyung-Hoon;Yu, Gwon-Jong;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1147-1149
    • /
    • 1993
  • ZnO/$SnO_2$:F bilayer films have been prepared by pyrosol deposition method to develop optimum transparent electrode for use in amorphous silicon solar cells. The solution for $SnO_2:F$ film was composed of $SnCl_4{\cdot}5H_2O,\;NH_4F,\;CH_3OH$ and HCl, and ZnO films have been deposited on the $SnO_2:F$ films by using the solution of $ZnO(CH_3COO){_2}{\cdot}2H_2O,\;H_2O\;and\;CH_3OH$. These films have been investigated the variation of electrical and optical properties under the hydrogen plasma exposure. The sheet resistance of the $SnO_2:F$ film was sharply increased and its transmittance was decreased with the blackish effect after plasma treatment. However, the ZnO/$SnO_2:F$ bilayer film was shown hydrogen plasma durability because the electrical and optical properties was almost unchanged more then 60 seconds exposure time.

  • PDF

Study on Formation of Semitransparent Cu Nanoparticle Layers for Realizing Metal Nanoparticle-Dielectric Bilayer Structures (금속나노입자-유전체 이층 구조 구현을 위한 반투명 Cu 나노입자층 형성에 관한 연구)

  • Yoon, Hye Ryeon;Jo, Yoon Ee;Yoon, Hoi Jin;Lee, Seung-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.460-464
    • /
    • 2020
  • This study reports the fabrication and application of semitransparent Cu nanoparticle layers. Spin coating and subsequent drying of a Cu colloid solution were performed to deposit Cu nanoparticle layers onto Si and glass substrates. As the spin speed of the spin coating increases, the density of the nanoparticles on the substrate decreases, and the agglomeration of nanoparticles is suppressed. This microstructural variation affects the optical properties of the nanoparticle layers. The transmittance and reflectance of the Cu nanoparticle layers increase with increasing spin speed, which results from the trade-off between the exposed substrate area and surface coverage of the Cu nanoparticles. Since the glass substrates coated with Cu nanoparticle layers are semitransparent and colored, it is anticipated that the application of a Cu nanoparticle-dielectric bilayer structure to transparent solar cells will improve the cell efficiency as well as aesthetic appearance.

Effect of stigmasterol in liposome bilayer on the stabilization of encapsulated ascorbic acid (리포솜 이중층의 stigmasterol이 포집된 ascorbic acid의 안정성에 미치는 영향)

  • Lee, Dong-Uk;Park, Hye-Won;Lee, Seung-Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.2
    • /
    • pp.200-203
    • /
    • 2020
  • The effect of stigmasterol (SS), a phytosterol, in the liposome bilayer on the stability of encapsulated ascorbic acid (ASA) was evaluated. Liposomes, consisting of phosphatidylcholine (PC) and SS, and ASA were encapsulated by the dehydration/rehydration method. The average particle size of the liposome increased with increasing SS content. SS significantly increased the stability of encapsulated ASA. For example, ASA remaining in the liposomes of 100:0, 90:10, and 70:30 (PC:SS, w/w) ratios was 34.12%, 49.88%, and 58.58%, respectively, after storage for 8 days at 4℃, while only 7.66% ASA remained in the buffer under the same conditions. These results indicated that SS in liposomes increased the stability of encapsulated ASA.

Photoelectron Transport Across Phospholipid Liposomes Pigmented by Anthracene and Naphthalene Derivatives

  • Lee, Yong-Ill;Kwon, Hwang-Won;Shin, Dae-Hyon;Yoon, Min-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.2
    • /
    • pp.120-124
    • /
    • 1986
  • In order to investigate effective solar energy conversion system, the light-induced electron transfer reactions have been examined across single-lamellar liposomes incorporated organic photosensitizers such as anthracene and naphthalene derivatives. We have observed photosensitized reduction of methyl viologen (1,1'-dimethyl-4,4'-$bipyridinium^{2+}$) dissolved in the exterior aqueous phase of the pigmented phospholipid liposomes when EDTA, as electron donor, is dissolved in the enclosed aqueous phase of the liposomes. The anthroyl stearic acid incorporated in the hydrophobic bilayer of liposomes leads to much less quantum yield for the photosensitized reduction of $MV^{2+}$ than the anthracene carboxylate incorporated in the outer hydrophilic layer. However, ${\beta}$-carotene with anthroyl stearic acid incorporated into the bilayer enhances the quantum yield significantly (${\Phi}{\simeq}0.2-0.3$), preventing the reverse reaction of electron transfer ($MV^+_\ {\rightarrow}MV^{2+}$) so that it might be useful for solar energy conversion into chemical energy. A naphthalene derivative, octadecyl naphthylamine sulfonic acid incorporated into the outer layer of liposomes results in less efficiency of $MV^{2+}$ reduction than anthroyl stearic acid. These results have been also tested with respect to lipid components of liposomes.

Fabrication of Microfibrous Structures with Rolled-Up Forms using a Bilayer Self-Assembly Process (이중층 자가조립 공정을 활용한 롤형태의 생체의료용 마이크로섬유 구조체 제작)

  • Kim, Yeong-Seo;Park, Suk-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.79-86
    • /
    • 2022
  • Numerous fabrication techniques have been used to mimic cylindrical natural tissues, such as blood vessels, tendons, ligaments, and skeletal muscles. However, most processes have limitations in achieving the biomimetic properties of multilayered and porous architectures. In this study, to embrace both features, a novel self-assembly method was proposed using electrospun microfibrous sheets. A bilayer microfibrous structure, comprising two sheets with different internal stresses, was fabricated by electrospinning a polycaprolactone (PCL) sheet on a uniaxially stretched thermoplastic polyurethane (TPU) sheet. Then, by removing the stretching tension, the sheet was rolled into a hollow cylindrical structure with a specific internal diameter. The internal diameter could be quantitatively controlled by adjusting the thickness of the PCL sheet against that of the TPU sheet. Through this self-assembly method, biomimetic cylindrical structures with multilayer and porous features can be manufactured in a stable and controllable manner. Therefore, the resulting structures may be applied to various tissue engineering scaffolds, especially vascular and connective tissues.