• Title/Summary/Keyword: biguanide

Search Result 14, Processing Time 0.02 seconds

The First Acanthamoeba keratitis Case of Non-Contact Lens Wearer with HIV Infection in Thailand

  • Tananuvat, Napaporn;Techajongjintana, Natnaree;Somboon, Pradya;Wannasan, Anchalee
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.5
    • /
    • pp.505-511
    • /
    • 2019
  • Acanthamoeba keratitis (AK) is a rare sight-threatening corneal infection, often reporting from contact lens wearers. An asymptomatic human immunodeficiency virus (HIV)-infected Thai male without history of contact lens use complained foreign body sensation at his left eye during motorbike riding. He had neither specific keratitis symptoms nor common drugs responding, which contributed to delayed diagnosis. By corneal re-scraping, Acanthamoeba-like cysts were detected by calcofluor white staining and agar culture. The etiological agent obtained from the culture was molecularly confirmed by Acanthamoeba spp.-specific PCR, followed by DNA sequencing. The results from BLAST and phylogenetic analysis based on the DNA sequences, revealed that the pathogen was Acanthamoeba T4, the major genotype most frequently reported from clinical isolates. The infection was successfully treated with polyhexamethylene biguanide resulting in corneal scar. This appears the first reported AK case from a non-contact lens wearer with HIV infection in Thailand. Although AK is sporadic in developing countries, a role of free-living Acanthamoeba as an opportunistic pathogen should not be neglected. The report would increase awareness of AK, especially in the case presenting unspecific keratitis symptoms without clinical response to empirical antimicrobial therapy.

Metformin displays in vitro and in vivo antitumor effect against osteosarcoma

  • Ko, Yunmi;Choi, Aery;Lee, Minyoung;Lee, Jun Ah
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.9
    • /
    • pp.374-380
    • /
    • 2016
  • Purpose: Patients with unresectable, relapsed, or refractory osteosarcoma need a novel therapeutic agent. Metformin is a biguanide derivative used in the treatment of type II diabetes, and is recently gaining attention in cancer research. Methods: We evaluated the effect of metformin against human osteosarcoma. Four osteosarcoma cell lines (KHOS/NP, HOS, MG-63, U-2 OS) were treated with metformin and cell proliferation was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell cycle progression and apoptosis were evaluated using flow cytometric analysis, and migration and wound healing assay were performed. Fourteen female Balb/c-nude mice received KHOS/NP cell grafts in their thigh, and were allowed access to metformin containing water (2 mg/mL) ad libitum. Tumor volume was measured every 3-4 days for a period of 4 weeks. Results: Metformin had a significant antiproliferative effect on human osteosarcoma cells. In particular, metformin inhibited the proliferation and migration of KHOS/NP cells by activation of AMP-activated protein kinase and consequent inhibition of the mammalian target of rapamycin pathway. It also inhibited the proliferation of cisplatin-resistant KHOS/NP clone cells. Analysis of KHOS/NP xenograft Balb/c-nude models indicated that metformin displayed potent in vivo antitumor effects. Conclusion: Further studies are necessary to explore metformin's therapeutic potential and the possibilities for its use as an adjuvant agent for osteosarcoma.

Pharmacokinetic-Pharmacodynamic Modeling for the Relationship between Glucose-Lowering Effect and Plasma Concentration of Metformin in Volunteers

  • Lee, Shin-Hwa;Kwon, Kwang-il
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.806-810
    • /
    • 2004
  • Metformin is a biguanide antihyperglycemic agent often used for the treatment of non-insulin dependent diabetics (NIDDM). In this study, the pharmacokinetics and pharmacodynamics of metformin were investigated in Korean healthy volunteers during a fasting state for over 10 h. In order to evaluate the amount of glucose-lowering effect of metformin, the plasma concentrations of glucose were measured for a period of 10 h followed by the administration of metformin (oral 500 mg) or placebo. In addition, the concentration of metformin in blood samples was determined by HPLC assay for the drug. All volunteers were consumed with 12 g of white sugar 10 minutes after drug intake to maintain initial plasma glucose concentration. The time courses of the plasma concentration of metformin and the glucose-lowering effect were analyzed by nonlinear regression analysis. The estimated $C_{max}$, $T_{max}$, $CL_{t}$/F (apparent clearance), V/F(apparent volume of distribution), and half-life of metformin were 1.42$\{pm}$0.07 $\mu\textrm{g}$/mL, 2.59$\{pm}$0.18h, 66.12$\{pm}$4.6 L/h, 26.63 L, and 1.54 h respectively. Since a significant counterclock-wise hysteresis was found for the metformin concentration in the plasma-effect relationship, indirect response model was used to evaluate pharmacodynamic parameters for metformin. The mean concentration at half-maximum inhibition $IC_{50}$, $k_{in}$, $k_{out}$ were 2.26 $\mu\textrm{g}$/mL, 83.26 $H^{-1}$, and 0.68 $H^{-1}$, respectively. Therefore, the pharmacokinetic-pharmacodynamic model may be useful in the description for the relationship between plasma concentration of metformin and its glucose-lowering effect.

Repaglinide, but Not Nateglinide Administered Supraspinally and Spinally Exerts an Anti-Diabetic Action in D-Glucose Fed and Streptozotocin-Treated Mouse Models

  • Sim, Yun-Beom;Park, Soo-Hyun;Kang, Yu-Jung;Kim, Sung-Su;Kim, Chea-Ha;Kim, Su-Jin;Lim, Su-Min;Jung, Jun-Sub;Ryu, Ohk-Hyun;Choi, Moon-Gi;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.6
    • /
    • pp.493-497
    • /
    • 2013
  • We have recently demonstrated that some anti-diabetic drugs such as biguanide and thizolidinediones administered centrally modulate the blood glucose level, suggesting that orally administered anti-diabetic drugs may modulate the blood glucose level by acting on central nervous system. The present study was designed to explore the possible action of another class of anti-diabetic drugs, glinidies, administered centrally on the blood glucose level in ICR mice. Mice were administered intracerebroventricularly (i.c.v.) or intrathecally (i.t.) with 5 to $30{\mu}g$ of repaglinide or nateglinide in D-glucose-fed and streptozotocin (STZ)-treated models. We found that i.c.v. or i.t. injection with repaglinide dose-dependently attenuated the blood glucose level in D-glucose-fed model, whereas i.c.v. or i.t. injection with nateglinide showed no modulatory action on the blood glucose level in D-glucose-fed model. Furthermore, the effect of repaglinide administered i.c.v. or i.t. on the blood glucose level in STZ-treated model was studied. We found that repaglinide administered i.c.v. slightly enhanced the blood glucose level in STZ-treated model. On the other hand, i.t. injection with repaglinide attenuated the blood glucose level in STZ-treated model. The plasma insulin level was enhanced by repaglinide in D-glucose-fed model, but repaglinide did not affect the plasma insulin level in STZ-treated model. In addition, nateglinide did not alter the plasma insulin level in both D-glucose-fed and STZ-treated models. These results suggest that the anti-diabetic action of repaglinide appears to be, at least, mediated via the brain and the spinal cord as revealed in both D-glucose fed and STZ-treated models.