• Title/Summary/Keyword: big rock

Search Result 67, Processing Time 0.02 seconds

Distribution of geothermal resources of Korea (우리나라의 지열자원 분표)

  • Kim, Hyoung-Chan;Lee, Chul-Woo;Song, Yoonho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.674-677
    • /
    • 2005
  • The characteristics of geothermal resources in Korea was roughly estimated using hot springs, 580 geothermal gradients and 338 heat flow data. In the aspect of hot springs with geologic structure, location of hot springs coincide with fault zone, especially younger age of Cretaceous to Tertiary. In the aspect of geothermal gradients, Pohang area shows the highest geothermal gradient anomaly, which is covered with unconsol idated rock of low thermal conductivity preserving the residual heat from igneous activity or radioactivity elements decay. In the aspect of heat flow density, high anomaly can be found along the zone connecting Uljin-Pohang-Busan on the southeastern part of Korean peninsula at which big fault zone as Yangsan fault is well developed.

  • PDF

Review of the Application of Artificial Intelligence in Blasting Area (발파 분야에서의 인공지능 활용 현황)

  • Kim, Minju;Ismail, L.A.;Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.44-64
    • /
    • 2021
  • With the upcoming 4th industrial revolution era, the applications of artificial intelligence(AI) and big data in engineering are increasing. In the field of blasting, there have been various reported cases of the application of AI. In this paper, AI techniques, such as artificial neural network, fuzzy logic, generic algorithm, swarm intelligence, and support vector machine, which are widely applied in blasting area, are introduced, The studies about the application of AI for the prediction of ground vibration, rock fragmentation, fly rock, air overpressure, and back break are surveyed and summarized. It is for providing starting points for the discussion of active application of AI on effective and safe blasting design, enhancing blasting performance, and minimizing the environmental impact due to blasting.

Field Tests of Hydraulic Rock Splitting Technique Using Arrays of Injection Holes with Guide Slots (유도슬롯과 주입공 배열을 이용한 수압암반절개 현장 실험)

  • Park, Jong Oh;Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.405-415
    • /
    • 2019
  • The cracks induced by hydraulic rock splitting technique are formed in the direction parallel to the free plane, which is perpendicular to the minimum principal stress of the ground, or is affected by the pre-existing microcracks. In this study, the hydraulic rock splitting experiments were conducted in which the guide slot was engraved in the direction parallel to the borehole axis on the biotite granite slope, and the hydraulic pressure was injected through the double packer pressure and interval section. The test results show that the cracks along with the guide slots were induced either by the double packer pressurization or the injection of hydraulic pressure into interval section, some cracks extended across the boreholes. Therefore, the hydraulic rock splitting test is expected to control efficiently the induced cracks if the guide slots are engraved in the direction of splitting and a big flow rate is applied.

A Study on the Nano-Plasma Rock Breaking Blasting Method Using Rapidly Expansive Metal Mixture (급팽창 금속혼합물을 이용한 나노프라즈마 바위 파쇄공법에 관한 연구)

  • Kim Sung-Kook;Ahn Myung-Seog;Cho Myung-Chan
    • Explosives and Blasting
    • /
    • v.23 no.3
    • /
    • pp.57-74
    • /
    • 2005
  • In the past, explosives like dynamite was used to blast rock. However, today it is difficult to use explosives in urban blastinglike excavation for subway, building, and housing land. According to Korea Department of Construction and Transportation's proposal for blasting design manual and test blasting, from TYPE I blasting to TYPE IV blasting are recommended when we determine 0.3cm/sec(centisec) as a maximum allowable ground vibration with a distance between $25m\~120m$ from structures. This article was written to introduce one of TYPE I (reck blasting within 25m from structures) blasting method, Nano-Plasma blasting method. When Nano-Plasma blasting method is applied in urban blasting job, ground vibration (15m away from blasting point) is expected 0.1cm/sec, which is only half of a ground vibration when low ground vibration blasting method is applied. By this unique characteristic, Nano-Plasma blasting method is epochal urban blasting technique.

Comparison of Hoek-Brown and Mohr-Coulomb failure criterion for deep open coal mine slope stability

  • Aksoy, Cemalettin O.;Uyar, Guzin G.;Ozcelik, Yilmaz
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.809-828
    • /
    • 2016
  • In deep open pit mines, slope stability is very important. Particularly, increasing the depths increase the risks in mines having weak rock mass. Blasting operations in this type of open pits may have a negative impact on slope stability. Several or combination of methods can be used in order to enable better analysis in this type of deep open-pit mines. Numerical modeling is one of these options. Many complex problems can be integrated into numerical methods at the same time and analysis, solutions can be performed on a single model. Rock failure criterions and rock models are used in numerical modeling. Hoek-Brown and Mohr-Coulomb terms are the two most commonly used rock failure conditions. In this study, mine planning and discontinuity conditions of a lignite mine facing two big landslides previously, has been investigated. Moreover, the presence of some damage before starting the study was identified in surrounding structures. The primary research of this study is on slope study. In slope stability analysis, numerical modeling methods with Hoek-Brown and Mohr-Coulomb failure criterions were used separately. Preparing the input data to the numerical model, the outcomes of patented-blast vibration minimization method, developed by co-author was used. The analysis showed that, the model prepared by applying Hoek-Brown failure criterion, failed in the stage of 10. However, the model prepared by using Mohr-Coulomb failure criterion did not fail even in the stage 17. Examining the full research field, there has been ongoing production in this mine without any failure and damage to surface structures.

Characteristics of the Horizontal Stress and the Possibility of Stress Induced Brittle Failure in Chuncheon-Yanggu Mountainous Region by the In-situ Stress Measurements (현장 측정에 의한 춘천-양구 산악지역 내 수평응력 분포와 취성파괴 가능성에 관한 연구)

  • Bae Seongho;Jeon Seokwon
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.157-167
    • /
    • 2005
  • Current initial rock stress state is one of the key factors required to evaluate the stability and failure around an excavated opening and its importance increases as the construction depth become deeper and the scale of the rock structure become larger. In this paper, the study was performed to evaluate the characteristics of the regional stress state at Chuncheon-Yanggu mountainous region, the East-North part of Kyeonggi Massif. Forty nine field stress measurements in 9 boreholes were conducted at the depth from 20 m to 290 m by hydraulic fracturing method. The fracturing tracing works were carried out by acoustic televiewer scanning. The study results revealed that the different intial rock stress states presented at different formation rock type and the excessive horizontal stress state with stress ratio(K) close to 3.0 was measured at the depth of 200 m and deeper in the intrusive unite body of the study area. The results from the investigation of excessive horizontal stress and its effect on failure mode showed that there exist several points where the localized excessive horizontal stresses are big enough to potentially induce brittle failures around the future openings greater than 100 m in depth within the granite body of the study area.

A Study of the Japanese Colonial Era Rock-Carved Seated Avalokiteśvara Statue at Ganghwa Bomunsa Temple (일제강점기 강화 보문사 마애관음보살좌상 연구)

  • Lee, Jumin
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.3
    • /
    • pp.62-79
    • /
    • 2020
  • The rock-carved seated Avalokiteśvara statue at Ganghwa Bomunsa Temple is a giant rock-carved Buddhist statue that was built in 1928 during the Japanese colonial era. Although it is a year-recorded Buddhist statue that occupies a prominent place in modern Korean Buddhist sculpture history, it has not been the subject of in-depth discussion due to weak research on modern Buddhist sculptures. In this study, to examine the various significant aspects of the rock-carved Seated Avalokiteśvara statue at Bomunsa Temple as a modern Buddhist sculpture, I have managed to determine its construction year, artificers, and patrons by deciphering the inscription around the rock-carved statue; in addition I have researched the effects of the rock shapes and landforms on the formation of the Buddhist statue by comparing and analyzing the points of view of both artificers and worshipers. I have also identified the specific circumstances of the time of construction from interviews with the descendants of artificers. A monk from Geumgangsan Mountain, Lee Hwaeung, took the role of sponsor and chief painter to construct the rock-carved seated Avalokiteśvara statue at Bomunsa temple. In the beginning of its construction in 1928, more than 100 donators jointly sponsored the construction of the statue. Gansong Jeon Hyoungphil sponsored alone at the time of the place of worship's expansion in 1938. Bomunsa Temple has been regarded as one of the top-three sacred places of Avalokiteśvara Bodhisattva together with Naksansa Temple in Yang Yang and Boriam in Nam Hae, due to the construction of the rock-carved statue. It took about three months to construct the statue. Lee Hwaeung drew a rough sketch and then Un Songhag and five masons from Ganghwa Island took part in the carving process. We can observe the line drawing technique around the rock-carved statue because the statue was carved based on the rough sketch of the monk painter. The aspect of Lee Hwaeung as a painter is revealed; therefore, we can identify the clue of painting pattern leading to Seogongchulyou- Hwaunghyoungjin- Ilonghyegag. The rock-carved seated Avalokiteśvara statue at Bomunsa Temple is a typical Avalokiteśvara that wears a jeweled crown and holds Kundica. It makes a strong impression as it has a big square-shaped face and a short neck and is unsophisticated in general. The artificers solved the issue of visual distortion of the rock-carved statue caused by carving on a 10-meter high and 40-degree sloping rock by controlling motion to its maximum, omitting detailed expression by emphasizing symmetry, and adjusting the head-to-body proportion to be almost one-to-one. In this study, especially, I presume the unified form of sacred sculptures and Buddhist altars, without making a Buddhist altar like the rock-carved seated Avalokiteśvara statue at Bomunsa Temple, to be a key characteristic of modern Buddhist sculptures. Furthermore, I make newly clear that the six letters of Sanskrit carved on nimbus, which had been interpreted as a Six-Syllable Mantra, are a combination with Jeongbeopgye and Sabang Mantras. In addition, three iron rings driven on eaves rock were used as a reference point, and after construction they were used as a decoration for the Bodhisattva with hanging wind chimes.

A Study on the Stress Induced Brittle Failure around Openings with Cross-sectional Shape by Scaled Model Test and DEM Simulation (모형시험과 개별요소법을 이용한 단면 형상에 따른 공동 주변 취성파괴에 관한 연구)

  • Bae, Seong-Ho;Jeon, Seok-Won;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.389-410
    • /
    • 2007
  • For moderately jointed to massive rock masses, the failure and deformation behaviors around an excavated opening are absolutely influenced by the initial rock stress and strength of in-situ rock mass. The localized and progressive brittle failure around an opening does not mean whole collapse of an excavated opening. But, for many cases, it may induce temporary stopping of excavation works and reexamination of the current supporting system, which can result in delay of the entire construction works and additional construction cost. In this paper, the characteristics of the brittle failure around an opening with stress level and tunnel shape was studied by the biaxial compressive test using scaled specimen and by the numerical simulation with $PFC^{2D}$. The biaxial test results were well coincided with the stress induced failure patterns around the excavated openings observed and monitored in the in-situ condition. For the circular part of the opening wall, the stress induced cracks initially occurred at the wall surface in the direction of the minimum principal stress and contributed to the localized notch shaped failure region having a certain range of angle. But for the corner and straight part of the opening wall, the cracks initiated at sharp corners were connected and coalesced each other and with existing micro cracks. Further they resulted in a big notch shaped failure region connecting two sharp corners.

Types and Historical Transition of Korean Traditional Seokgasan (한국 전통 석가산의 유형과 역사적 변천)

  • Yoon, Young-Jo;Yoon, Young-Hwal
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.3
    • /
    • pp.83-97
    • /
    • 2010
  • Seokgasan which is artificial rock mountain had been developed into one of the axes of traditional rock landscape of Goryo period and Joseon period as the central component of Korean traditional landscaping, but the legacy was cut off at the present. In the middle of the Goryo period, the Seokgasan made by piling rocks which were started from replicating miniature landscape has been developed into presenting the symbol and Seokgasan so it faced the new transition period of traditional rock garden culture. Seokgasan so it as small knoll, the Korean traditional Seokgasan was made differently the the surrounding landscape with big Seokgasan in China which overwhelms so it harmonize the surrounding landscape to build Korean style of the Seokgasan. This study is the objective investigation based on the old literature and the field remains, so it aims to so it comprehend the type of Seokgasan and developmental forms. At the result of investigation, 5 types of Seokgasan such as rocks piling on a pond, piling rocks, rocks in a pond, rocks on a ground, rock in a pot etc. has been developing in addition to the rocks which the oddly shaped rock is piled up as the basic framework. Among those, the piling rocks on a pond of Seokgasan which means water flows in Seokgasan is the representative Seokgasan which has been continued since the middle of the Goryo period until the end of the Joseon period. This study is expected to be the foundation which will succeed to legacy of Seokgasan tradition which was cut off and to develop by recovering historical landscaping value and identity of Seokgasan.

K-Ar whole Rock Ages of the Rhyolitic Rocks at Punggog in the Jangseong Sheet, Taebaegsan Area (태백산지역(太白山地域) 장성도복내(長省圖福內) 풍곡(豊谷)에 분포(分布)되어 있는 유문암질암(流紋岩質岩)의 K-Ar 전암연령(全岩年齡))

  • Jin, Myung-Shik;Kim, Sahng-Yup;Seo, Hyo-Joon;Kim, Seong-Jae
    • Economic and Environmental Geology
    • /
    • v.22 no.1
    • /
    • pp.17-20
    • /
    • 1989
  • Two rhyolitic rocks were taken at punggog of the Jangseong sheet in the Taebaegsan mineralized area and isotopically dated by K-Ar whole rock method. One is a rhyolite which gives $62.69{\pm}1.15Ma$ and the other is a rhyolitic tuff which gives $51.67{\pm}6.64Ma$, respectively. Generally K-Ar whole rock ages of the volcanic rocks can be assumed to be the formation age of them, if there is no geological criterion of secondary effects. But the two rhyolitic rocks were slightly hydrothermally altered and the age the rhyolitic tuff is a little younger than that of the rhyolite. However, there is no geological criterion to show any big hiatus between them in field, yet. Therefore, the age data would be interpreted, as that the rhyolitic rock mass has been probably extruded at about 60 Ma, a little older than 60 Ma, in the area. The ages of them probably appear to be secondary ages after the alteration. This fact well coincides with the K-Ar whole rock age of quartz-porphyry ($57.25{\pm}0.89Ma$) distributed near the 1st Yeonhwa Pb-Zn mine (Park et al., personal comm.), because the quartz-porphyry look to be a product of hydrothermal alteration of the volcanic rock.

  • PDF