• 제목/요약/키워드: big data value

검색결과 579건 처리시간 0.025초

빅 데이터를 이용한 스마트 응용의 설계 (Design of a Smart Application using Big Data)

  • 오선진
    • 한국인터넷방송통신학회논문지
    • /
    • 제15권6호
    • /
    • pp.17-24
    • /
    • 2015
  • 정보 기술과 첨단 무선 네트워크 응용 기술의 급속한 발전과 더불어, 방대하고 다양한 형태의 데이터들이 시시각각 양산되고 있으며, 최근 빅 데이터 분석기술의 중요성과 가치는 점차 증대되고 있다. 과거에는 너무 방대하여 관리조차 힘들어 무용지물이던 빅 데이터는 데이터 수집 컴퓨팅 장비와 분석 도구의 발전을 통해 다양한 활용분야에서 작은 규모의 데이터로는 불가능했던 새로운 영감이나 가치를 추출해 내는 것이 가능하게 되었다. 하지만 현실 세계에서는 아직도 빅 데이터 대부분이 제대로 적절하게 분석되어 사용되지 못하고 사장되는 것이 사실이다. 결국, 빅 데이터에서 통찰력 습득과 새로운 가치 창출을 위한 전제 조건으로 효율적인 빅 데이터 처리를 위한 분석 기술의 확보가 중요하다고 할 수 있다. 본 논문에서는 이러한 빅 데이터를 보다 효율적으로 처리하고 원하는 관심 정보를 효과적으로 추출해 낼 수 있는 정밀한 분석기법과 처리 기술을 연구하고 이를 실제 적용하는 스마트 응용을 설계한다.

빅데이터 분석을 위해 아파치 스파크를 이용한 원시 데이터 소스에서 데이터 추출 (Capturing Data from Untapped Sources using Apache Spark for Big Data Analytics)

  • ;구흥서
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1277-1282
    • /
    • 2016
  • The term "Big Data" has been defined to encapsulate a broad spectrum of data sources and data formats. It is often described to be unstructured data due to its properties of variety in data formats. Even though the traditional methods of structuring data in rows and columns have been reinvented into column families, key-value or completely replaced with JSON documents in document-based databases, the fact still remains that data have to be reshaped to conform to certain structure in order to persistently store the data on disc. ETL processes are key in restructuring data. However, ETL processes incur additional processing overhead and also require that data sources are maintained in predefined formats. Consequently, data in certain formats are completely ignored because designing ETL processes to cater for all possible data formats is almost impossible. Potentially, these unconsidered data sources can provide useful insights when incorporated into big data analytics. In this project, using big data solution, Apache Spark, we tapped into other sources of data stored in their raw formats such as various text files, compressed files etc and incorporated the data with persistently stored enterprise data in MongoDB for overall data analytics using MongoDB Aggregation Framework and MapReduce. This significantly differs from the traditional ETL systems in the sense that it is compactible regardless of the data formats at source.

공간 빅데이터의 개념 및 서비스 프레임워크 구상에 관한 연구 (A Study on Concept and Services Framework of Geo-Spatial Big Data)

  • 유선철;최원욱;신동빈;안종욱
    • Spatial Information Research
    • /
    • 제22권6호
    • /
    • pp.13-21
    • /
    • 2014
  • 본 연구는 수요 및 관심이 증대되고 있는 공간 빅데이터의 개념설정과 이를 기반으로 공간 빅데이터 기술을 활용할 수 있는 서비스 프레임워크를 개념적으로 제시하는데 목적이 있다. 공간 빅데이터는 정형 반정형 비정형 공간 빅데이터를 효율적으로 수집 저장 관리하는 동시에 공간정보와 융합된 다양한 속성정보에 대해 실시간 통합 분석을 수행하여 의미 있는 정보를 추출함으로써 미래에 대응할 수 있는 기술이라 할 수 있다. 또한 공간 빅데이터는 기존 빅데이터가 가지는 3V(Volume, Variety, Velocity) 특성에 4V(Veracity, Visualization, Versatile, Value)가 추가된 특성을 가지며, 저장 관리, 분석, 서비스로 구분하여 활용범위를 설정할 수 있다. 그리고 공간 빅데이터를 활용하기 위한 서비스 측면에서의 프레임워크를 제시하였다. 구체적으로 서비스 관리, 서비스 콘테이너, 서비스 모니터링의 구성요소로 구상안을 제시하였다. 이러한 연구결과를 참조로 새로운 기술 및 기법들을 적용하여 수정 보완하고, 향후 개발예정인 저장 관리, 분석 기술개발과 연계하여 구체적인 서비스 제공방안에 대한 연구가 지속적으로 이루어져야 할 것이다.

빅데이터를 활용한 영화흥행 요인 분석: 영화 <기생충>의 SNS 활용지수와 토픽키워드 중심으로 (Analyzing Factors of Success of Film Using Big Data : Focusing on the SNS Utilization Index and Topic Keywords of the Film )

  • 김진욱
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제14권4호
    • /
    • pp.145-153
    • /
    • 2020
  • 빠르게 변화하고 있는 4차 산업 시대에 빅데이터는 다양한 분야에 활용되고 있다. 최근 문화예술콘텐츠 전반에도 빅데이터의 활용은 급속도로 적용되고 있고, 그중에서도 영화는 자본이 많이 드는 예술장르로서 빅데이터의 활용은 매우 유용한 분석 수단이다. 본 연구는 2019년 제72회 칸 영화제의 황금종려상과 아카데미 시상식에서 4관왕(작품상, 감독상, 각본상, 외국어 영화상)을 차지하며 한국영화의 가치를 보여준 영화 <기생충>을 대상으로 빅데이터 분석기법을 적용하여 실시하였다. 이렇게 분석된 값은 데이터의 주기별 변화량과 감성의 값을 부여하는 오피니언 마이닝을 통해 영화 흥행을 예측하고, 페이스북(Facebook), 트위터(Twitter) 등 SNS의 활용지수와 토픽 키워드를 추출하여 관객들의 관심을 반영하는 영화적 요인들이 무엇인지를 살펴보았다. 이처럼 빅데이터를 활용한 영화흥행 요인분석으로 모델 구축 및 모형 개발로 흥행예측이 가능해지면 영화제작 과정의 효율성을 극대화하면서 제작비용과 영화실패에 따른 리스크를 최소화 할 것이다.

소셜 빅데이터 분석을 통한 소비자 가치 인식 연구: 신규 스마트폰을 중심으로 (A Study on Consumer Value Perception through Social Big Data Analysis: Focus on Smartphone Brands)

  • 김형중;김진화
    • 한국전자거래학회지
    • /
    • 제22권1호
    • /
    • pp.123-146
    • /
    • 2017
  • 소비자들이 SNS에 공유하는 정보는 소비자들의 구매나 선택에 대한 결정에 많은 영향을 미친다. 이에 소셜 빅데이터를 활용하여 소비자 가치를 분석한 새로운 연구방법론에 주목할 필요가 있다. 이러한 맥락에서 본 연구의 목적은 소셜 빅데이터 분석을 통해 소비자의 가치 인식을 계량적으로 분석해 보고자한다. 이러한 분석 결과를 토대로 광고전략 개발에 적용할 수 있는지를 규명하고자 하였다. 본 연구에서는 3가지 스마트폰 브랜드에 대해 텍스트 마이닝과 긍 부정 이미지 분석을 활용함으로써 소비자 가치 구조를 파악하였다. 분석결과 브랜드별 소비자의 가치 인식에 대한 감성적인 측면과 이성적인 측면에서 차별적인 내용을 선별할 수 있었다. 갤럭시 S7과 아이폰 6S의 경우 출시일 이전에는 감성적인 측면이 중요한 것으로 나타났지만 출시일 이후에는 이성적인 측면이 중요한 것으로 나타났다. 그러나 LG G5의 경우 출시일 이전이나 이후 모두 감성적인 측면이 중요한 것으로 나타났다. 또한 소비자 가치 인식의 분석 결과를 바탕으로 핵심적인 광고전략 2가지 안을 제안할 수 있다. 갤럭시 S7의 경우 광고전략 개발 시 제품속성에 대한 성능이나 차별화된 기능 등 이성적 측면을 강조해야 할 필요성이 있다. LG G5의 경우 광고전략에서 제품을 사용함으로써 느껴지는 행복감, 설레임, 즐거움, 재미 등의 감성적 측면을 광고전략 개발에 중요하게 고려할 필요가 있다. 결과적으로 본 연구는 소비자 가치 분석을 통해 실제 광고전략에 좋은 기준을 제시할 것으로 판단된다. 광고전략은 주로 직감이나 경험에 의해 이루어진다. 이에 소셜 빅데이터 분석을 통한 소비자의 가치 인식 분석으로 광고전략을 개발하는 것은 중요한 시사점을 안겨 줄 것으로 판단한다.

Squall: 실시간 이벤트와 마이크로-배치의 동시 처리 지원을 위한 TMO 모델 기반의 실시간 빅데이터 처리 프레임워크 (Squall: A Real-time Big Data Processing Framework based on TMO Model for Real-time Events and Micro-batch Processing)

  • 손재기;김정국
    • 정보과학회 논문지
    • /
    • 제44권1호
    • /
    • pp.84-94
    • /
    • 2017
  • 최근 다양하고 방대한 양의 데이터를 처리하기 위해 빅데이터의 특성인 5V(Volume, Variety, Velocity, Veracity, Value) 중에서도 속도(Velocity)의 중요성이 강조되면서 대량의 데이터를 빠르고 정확하게 처리하는 기술인 실시간 스트림 처리(Real-time Stream processing)를 위해 많은 연구가 진행되고 있다. 본 논문에서는 실시간 빅데이터 처리를 위해 대표적인 실시간 객체 모델인 TMO(Time-triggered Message-triggered Object) 개념을 도입한 Squall 프레임워크를 제시하고, 단일 노드에서 동작하는 Squall 프레임워크와 그 동작들에 대해 기술한다. TMO는 작업을 수행할 때, 특정 조건에 대해 실시간으로 처리하는 비주기적인 처리방법과 일정 시간 간격동안 주기적인 처리를 지원하는 객체 모델이다. 따라서 Squall 프레임워크는 실시간 빅데이터의 실시간 이벤트 스트림 및 마이크로-배치 처리를 동시에 지원하고, 기존 아파치 스톰과 스파크 스트리밍 대비 상대적으로 우수한 성능을 제공한다. 하지만 Squall은 대부분의 프레임워크에서 제공되는 다중 노드에서의 실시간 분산처리를 위한 추가적인 개발이 필요하다. 결론적으로, TMO 모델의 장점은 실시간 빅데이터 처리시 기존 아파치의 스톰이나 스파크 스트리밍의 단점들을 극복할 수 있다. 이러한 TMO 모델은 실시간 빅데이터 처리에 있어 유용한 모델로서의 가능성을 가지고 있다.

활용 주체별 빅데이터 수용 인식 차이에 관한 연구: 활용 목적, 조직 규모, 업종 특성을 중심으로 (Intention to Use and Group Difference in Adopting Big Data: Towards a Comprehensive View)

  • 이영주;양현철
    • 정보화정책
    • /
    • 제24권1호
    • /
    • pp.79-99
    • /
    • 2017
  • 빅데이터 관련 기술이 점차 성숙해지고 있고 공공부문을 중심으로 초기 성공사례들이 발표되고 있으나 실질적인 가치 창출에 대한 확신 부족과 개인정보 유출에 대한 여전한 우려로 산업 전반으로의 확산이 더딘 실정이다. 본 연구에서는 빅데이터 도입 과정에서 다양한 이해관계자 집단 별로 긍정적, 부정적 인식이 도입 활성화에 어떠한 차이를 보이는지 탐색적으로 규명하고자 한다. 먼저 기술수용모형(TAM)과 업무기술적합성(TTF) 모형, 프라이버시 계산이론을 바탕으로 긍정적인 평가요인과 부정적인 평가요인을 통합하여 독립변수를 개발하고 빅데이터 이용의도를 종속변수로 하는 연구 모형을 개발하였다. 국내 빅데이터 실사용자 또는 잠재적 사용자를 대상으로 실증 분석한 결과 선행요인 중 빅데이터의 인지된 유용성, 업무기술적합성, 개인정보침해위험이 이용의도에 유의미한 영향을 주고, 사용용이성은 유의성이 없는 것으로 나타났다. 또한 각 요인 별로 빅데이터 활용 주체에 따른 집단 간 변수의 평균 차이를 부분적으로 발견할 수 있었고, 독립변수와 종속변수와의 인과관계에서도 일부 조절효과를 발견하였다. 본 연구의 시사점을 통해 향후 빅데이터의 산업 활성화를 위해서 이해관계자 별 차별화된 정책 개발이 필요한 시점이다.

빅 데이터 기술 동향 및 분석 (Big Data Technology Trends and Analysis)

  • 신화용;박경수;문일영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.953-954
    • /
    • 2013
  • 스마트 폰, 태블릿 PC 등의 사용자가 급속히 증가함에 따라 데이터의 양이 많아지고 그 유형도 다양해지고 있다. 이런 방대한 양의 데이터를 모아 활용하여 새로운 가치를 만드는 빅 데이터 분야가 급부상 하고 있다. 형식이 다양한 빅 데이터는 기존의 데이터 분석 방식으로는 분석이 어려운 비정형 데이터이다. 최근에는 이러한 빅 데이터와 관련된 분석 기술과 마케팅, 상품기획 등에 이용하려는 움직임이 급증하고 있다. 이에 본 논문에서는 빅 데이터의 국 내외 동향을 분석하고자 한다.

  • PDF

BERTopic 모델을 이용한 항공사 서비스에서 지각된 고객가치가 고객 만족도에 미치는 영향 분석 (The Effect of Perceived Customer Value on Customer Satisfaction with Airline Services Using the BERTopic Model)

  • 정의주;이병현;이청용;김재경
    • 지식경영연구
    • /
    • 제24권3호
    • /
    • pp.95-125
    • /
    • 2023
  • 항공산업의 급격한 성장으로 인해 많은 항공사가 생기면서 고객들이 항공사를 선택할 때 고려하는 요소가 늘어나고 있다. 이에 따라 항공사는 고품질의 서비스와 차별화된 경험적 가치를 제공하여 고객가치를 높이고 있다. 초기 고객가치 연구는 제품 및 서비스에 대한 효용성의 관점에서 비용과 편익 간의 상충관계로 간주하고 실용적 가치 중심으로 이루어졌지만, 최근에는 경험적 측면의 가치의 중요성이 주목받았다. 그러나 경험적 측면의 가치는 제품이나 서비스 상황에 따라 고객가치를 구성하는 요소가 변화되기 때문에 제품이나 서비스에 대한 고객의 선호도를 충분히 나타내는 특정 맥락에서 조사해야 한다. 또한, 고객가치는 고객이 의사결정을 내릴 때 큰 영향을 미치므로 항공사는 고객가치를 구성하는 요소를 정확하게 이해하는 것이 필요하다. 따라서 본 연구에서는 항공 전문 웹사이트인 스카이트랙스(Skytrax)에서 고객이 작성한 리뷰와 평점을 수집하고 BERTopic 모델을 활용하여 고객가치에 대한 요소를 도출하였다. 분석 결과, 항공사에서 고객가치를 구성하는 9가지 요소를 파악하였으며 이 중 6가지 요소가 고객 만족도와 영향을 미침을 확인하였다. 이를 통해 본 연구는 고객가치의 세분화된 파악을 가능하게 하는 새로운 방법론을 제안하고, 항공사에 구체적인 서비스 품질 향상을 위한 방향을 제시한다는 의의와 시사점을 가진다.

무역 디지털 트랜스포메이션을 위한 빅데이터 도입 및 활용에 관한 연구 (Research on the introduction and use of Big Data for trade digital transformation)

  • 정준모;정윤세
    • 무역학회지
    • /
    • 제47권3호
    • /
    • pp.57-73
    • /
    • 2022
  • The process and change of convergence in the economy and industry with the development of digital technology and combining with new technologies is called Digital Transformation. Specifically, it refers to innovating existing businesses and services by utilizing information and communication technologies such as big data analysis, Internet of Things, cloud computing, and artificial intelligence. Digital transformation is changing the shape of business and has a wide impact on businesses and consumers in all industries. Among them, the big data and analytics market is emerging as one of the most important growth drivers of digital transformation. Integrating intelligent data into an existing business is one of the key tasks of digital transformation, and it is important to collect and monitor data and learn from the collected data in order to efficiently operate a data-based business. In developed countries overseas, research on new business models using various data accumulated at the level of government and private companies is being actively conducted. However, although the trade and import/export data collected in the domestic public sector is being accumulated in various types and ranges, the establishment of an analysis and utilization model is still in its infancy. Currently, we are living in an era of massive amounts of big data. We intend to discuss the value of trade big data possessed from the past to the present, and suggest a strategy to activate trade big data for trade digital transformation and a new direction for future trade big data research.