• Title/Summary/Keyword: big data value

검색결과 579건 처리시간 0.025초

빅데이터 분석능력과 가치가 비즈니스 성과에 미치는 영향 (The Impact of Big Data Analytics Capabilities and Values on Business Performance)

  • 노미진;이충권
    • 스마트미디어저널
    • /
    • 제10권1호
    • /
    • pp.108-115
    • /
    • 2021
  • 본 연구는 기업의 빅데이터 분석가들을 대상으로 빅데이터의 분석능력과 가치, 그리고 비즈니스 성과와의 관련성을 살펴보았다. 빅데이터가 가져올 수 있는 가치를 거래적 가치, 전략적 가치, 변혁적 가치, 정보적 가치로 분류하였고, 이러한 가치들이 비즈니스 성과로 연결되는 지를 검증하고자 하였다. 빅데이터 분석을 수행한 경험이 있는 직원들을 대상으로 200부의 설문을 수거하여 분석하였다. 구조방정식 모형으로 가설을 검정하였고, 빅데이터 분석능력은 빅데이터의 가치와 비즈니스 성과에 의미있는 영향력을 미치는 것으로 나타났다. 빅데이터 가치들 중에서 거래적 가치, 전략적 가치, 그리고 변혁적 가치는 비즈니스 성과에 긍정적인 영향을 미치지만, 정보적 가치의 영향은 입증되지 않았다. 본 연구의 결과는 빅데이터를 활용하여 비즈니스 성과를 얻으려는 기업들에게 유용한 정보를 제공할 수 있을 것으로 기대된다.

빅데이터 도입의도에 미치는 영향요인에 관한 연구: 전략적 가치인식과 TOE(Technology Organizational Environment) Framework을 중심으로 (An Empirical Study on the Influencing Factors for Big Data Intented Adoption: Focusing on the Strategic Value Recognition and TOE Framework)

  • 가회광;김진수
    • Asia pacific journal of information systems
    • /
    • 제24권4호
    • /
    • pp.443-472
    • /
    • 2014
  • To survive in the global competitive environment, enterprise should be able to solve various problems and find the optimal solution effectively. The big-data is being perceived as a tool for solving enterprise problems effectively and improve competitiveness with its' various problem solving and advanced predictive capabilities. Due to its remarkable performance, the implementation of big data systems has been increased through many enterprises around the world. Currently the big-data is called the 'crude oil' of the 21st century and is expected to provide competitive superiority. The reason why the big data is in the limelight is because while the conventional IT technology has been falling behind much in its possibility level, the big data has gone beyond the technological possibility and has the advantage of being utilized to create new values such as business optimization and new business creation through analysis of big data. Since the big data has been introduced too hastily without considering the strategic value deduction and achievement obtained through the big data, however, there are difficulties in the strategic value deduction and data utilization that can be gained through big data. According to the survey result of 1,800 IT professionals from 18 countries world wide, the percentage of the corporation where the big data is being utilized well was only 28%, and many of them responded that they are having difficulties in strategic value deduction and operation through big data. The strategic value should be deducted and environment phases like corporate internal and external related regulations and systems should be considered in order to introduce big data, but these factors were not well being reflected. The cause of the failure turned out to be that the big data was introduced by way of the IT trend and surrounding environment, but it was introduced hastily in the situation where the introduction condition was not well arranged. The strategic value which can be obtained through big data should be clearly comprehended and systematic environment analysis is very important about applicability in order to introduce successful big data, but since the corporations are considering only partial achievements and technological phases that can be obtained through big data, the successful introduction is not being made. Previous study shows that most of big data researches are focused on big data concept, cases, and practical suggestions without empirical study. The purpose of this study is provide the theoretically and practically useful implementation framework and strategies of big data systems with conducting comprehensive literature review, finding influencing factors for successful big data systems implementation, and analysing empirical models. To do this, the elements which can affect the introduction intention of big data were deducted by reviewing the information system's successful factors, strategic value perception factors, considering factors for the information system introduction environment and big data related literature in order to comprehend the effect factors when the corporations introduce big data and structured questionnaire was developed. After that, the questionnaire and the statistical analysis were performed with the people in charge of the big data inside the corporations as objects. According to the statistical analysis, it was shown that the strategic value perception factor and the inside-industry environmental factors affected positively the introduction intention of big data. The theoretical, practical and political implications deducted from the study result is as follows. The frist theoretical implication is that this study has proposed theoretically effect factors which affect the introduction intention of big data by reviewing the strategic value perception and environmental factors and big data related precedent studies and proposed the variables and measurement items which were analyzed empirically and verified. This study has meaning in that it has measured the influence of each variable on the introduction intention by verifying the relationship between the independent variables and the dependent variables through structural equation model. Second, this study has defined the independent variable(strategic value perception, environment), dependent variable(introduction intention) and regulatory variable(type of business and corporate size) about big data introduction intention and has arranged theoretical base in studying big data related field empirically afterwards by developing measurement items which has obtained credibility and validity. Third, by verifying the strategic value perception factors and the significance about environmental factors proposed in the conventional precedent studies, this study will be able to give aid to the afterwards empirical study about effect factors on big data introduction. The operational implications are as follows. First, this study has arranged the empirical study base about big data field by investigating the cause and effect relationship about the influence of the strategic value perception factor and environmental factor on the introduction intention and proposing the measurement items which has obtained the justice, credibility and validity etc. Second, this study has proposed the study result that the strategic value perception factor affects positively the big data introduction intention and it has meaning in that the importance of the strategic value perception has been presented. Third, the study has proposed that the corporation which introduces big data should consider the big data introduction through precise analysis about industry's internal environment. Fourth, this study has proposed the point that the size and type of business of the corresponding corporation should be considered in introducing the big data by presenting the difference of the effect factors of big data introduction depending on the size and type of business of the corporation. The political implications are as follows. First, variety of utilization of big data is needed. The strategic value that big data has can be accessed in various ways in the product, service field, productivity field, decision making field etc and can be utilized in all the business fields based on that, but the parts that main domestic corporations are considering are limited to some parts of the products and service fields. Accordingly, in introducing big data, reviewing the phase about utilization in detail and design the big data system in a form which can maximize the utilization rate will be necessary. Second, the study is proposing the burden of the cost of the system introduction, difficulty in utilization in the system and lack of credibility in the supply corporations etc in the big data introduction phase by corporations. Since the world IT corporations are predominating the big data market, the big data introduction of domestic corporations can not but to be dependent on the foreign corporations. When considering that fact, that our country does not have global IT corporations even though it is world powerful IT country, the big data can be thought to be the chance to rear world level corporations. Accordingly, the government shall need to rear star corporations through active political support. Third, the corporations' internal and external professional manpower for the big data introduction and operation lacks. Big data is a system where how valuable data can be deducted utilizing data is more important than the system construction itself. For this, talent who are equipped with academic knowledge and experience in various fields like IT, statistics, strategy and management etc and manpower training should be implemented through systematic education for these talents. This study has arranged theoretical base for empirical studies about big data related fields by comprehending the main variables which affect the big data introduction intention and verifying them and is expected to be able to propose useful guidelines for the corporations and policy developers who are considering big data implementationby analyzing empirically that theoretical base.

Does Big Data Matter to Value Creation? : 오라클(Oracle) 솔루션을 중심으로 (Does Big Data Matter to Value Creation? : Based on Oracle Solution Case)

  • 김용희;유응준;강미선;최정일
    • 한국IT서비스학회지
    • /
    • 제11권3호
    • /
    • pp.39-48
    • /
    • 2012
  • It is essential that firm makes a rational and scientific decision making and creates a news value for the future direction. To do so, many firms attempt to collect meaningful data and find the filtered and refined implication for the better customer relationship and the active market drive through the various analytic tools. Among the possible IT solutions, utilization of 'Big Data' is becoming more attractive and necessary in such a way that it would help firms obtain the systemized and demanding information and facilitate their decision making process to keep up with the market needs. In this paper, it introduces the concepts and development of 'Big Data' recognized as a IT resource and solution under the rapidly changing firm environment. This study also presents the several firm cases using Big Data' and the Oracle's total data management and analytic solutions in order to support the application of 'Big Data'. Finally this paper provides a holistic viewpoint and realistic approach on use of 'Big Data' to create a new value.

기업의 빅데이터 투자가 기업가치에 미치는 영향 연구 (The effect of Big-data investment on the Market value of Firm)

  • 권영진;정우진
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.99-122
    • /
    • 2019
  • IDC(International Data Corporation) 사(社)의 최근 보고서에 따르면, 2025년에는 2016년에 생성된 데이터의 10배에 달하는 163제타바이트의 데이터가 생성될 것이고 그 주체의 비중은 소비자에서 기업으로 이동하고 있다고 한다. 이러한 소위 '빅데이터의 물결'은 도래하고 있고 그 파장은 산업 전반적으로 영향을 미칠 것이다. 따라서, 방대한 데이터를 효과적으로 관리하는 것은 기업의 관점에서 그 어느 때보다 더 중요하다. 하지만, IT 투자에 대한 효과를 측정한 선행 연구는 다수 존재함에도 불구하고 빅데이터 투자 효과를 측정한 선행 연구는 거의 전무한 실정이다. 따라서, 해당 투자 효과를 정량적으로 분석한다면 기업의 의사 결정을 도울 수 있을 것이다. 본 연구는 효율적 시장 가설을 이론적 바탕으로 둔 사건연구방법론(Event Study Methodology)을 적용하여, 기업의 빅데이터 투자가 시장 투자자들의 반응에 미치는 영향을 측정하였다. 또한, 보다 심층적으로 이 효과를 분석하기 위해서 5가지 하위 변수를 설정했고 그 내용은 기업 크기 구분, 산업 구분(Finance와 ICT), 투자 구축 완료 구분, 벤더 유무 구분이다. 분석 결과, 91개 기업은 빅데이터 투자 공시 이후 시장 가치가 평균 0.92% 상승한다는 사실을 확인하였다. 특히 Finance 기업, non-ICT 기업, 시가 총액이 작은 기업, 빅데이터 전문 벤더 기업을 통해 투자한 기업, 그리고 빅데이터 시스템이 구축 완료됐다는 공시에 해당하는 기업의 시장 가치가 두드러지게 상승한다는 사실을 알 수 있었다. 본 연구는 빅데이터 투자 효과를 측정한 선행 연구가 거의 전무하다는 점에서 학문적인 의의를 지니고, 빅데이터 투자를 고려 중인 기업 의사 결정자들에게 실질적인 참고 자료가 될 수 있다는 점에서 실무적인 시사점을 갖는다.

실물옵션 기법을 이용한 기업의 빅데이터 기술 도입의 경제적 가치 분석 - 유유제약 사례를 중심으로 - (A Study On The Economic Value Of Firm's Big Data Technologies Introduction Using Real Option Approach - Based On YUYU Pharmaceuticals Case -)

  • 장혁수;이봉규
    • 인터넷정보학회논문지
    • /
    • 제15권6호
    • /
    • pp.15-26
    • /
    • 2014
  • 본 연구는 실물옵션모형을 이용하여 기업의 빅데이터 기술도입에 따른 경제적 가치를 분석한 연구로, 빅데이터 기술도입을 결정한 기업의 주가를 이용하여 주가증분으로 평가한 경제적 가치의 크기를 옵션가치를 통해 분석하였다. 옵션가치 도출을 위해 빅데이터 기술을 마케팅에 활용한 기업의 주가를 통해 빅데이터 기술에 의한 주가증분을 추출하고, 해당 주가로 일반화적률법(GMM)을 이용하여 확률과정을 추정하였다. 옵션가치 도출을 위해 블랙-숄즈 편미분방정식을 도출하였고, 이를 수치해석적 방법인 유한차분법으로 해를 구하여 빅데이터 기술 도입에 따른 경제적 가치를 추정하였다. 분석결과, 빅데이터 투자비용을 5천만 원으로 가정했을 때, 주가증분을 통해 도출한 옵션가치는 약 38.5억 원으로 나타났고 시간가치는 약 1백만에 해당하는 것으로 나타났다. 따라서 빅데이터 기술도입은 실질적인 기업의 수익을 창출하는 효과에 더하여, 미미하지만 투자시점에 고려할 수 있는 추가적 시간가치까지 존재하는 것으로 해석된다. 민감도분석 결과 기초자산 크기가 작아질수록 옵션가치는 낮아지고, 투자비용이 낮아질수록 옵션가치는 높아지는 것으로 분석되었고, 변동성 변화에 따른 옵션가치 민감도는 크지 않은 것으로 나타났는데 이는 빅데이터 기술의 경우 기술도입 기간과 이에 따른 주가변동 폭이 낮아 변동성 증가에 따른 내재가치 증가 효과가 크지 않기 때문인 것으로 해석된다. 본 연구는 빅데이터 기술도입에 따른 효과를 실물옵션을 도입하여 분석한 최초의 연구로 빅데이터 옵션가치 도출에 빅데이터 기술을 도입한 기업의 주가를 기초자산으로 사용한 최초의 연구라는 점에서 기존연구와 차별화된다. 기업들의 빅데이터 기술 도입이 비교적 최근에 발생하였음을 고려할 때 동 분석방법론을 다양한 기업에 적용함으로 빅데이터 기술의 정체한 가치를 도출하는데 기여할 수 있을 것으로 기대된다.

빅데이터를 활용한 양파 관측의 사회적 후생효과 분석 (Analysis of Social Welfare Effects of Onion Observation Using Big Data)

  • 주재창;문지혜
    • 한국유기농업학회지
    • /
    • 제29권3호
    • /
    • pp.317-332
    • /
    • 2021
  • This study estimated the predictive onion yield through Stepwise regression of big data and weather variables by onion growing season. The economic feasibility of onion observations using big data was analyzed using estimated predictive data. The social welfare effect was estimated through the model of Harberger's triangle using onion yield prediction with big data and it without big data. Predicted yield using big data showed a deviation of -9.0% to 4.2%. As a result of estimating the social welfare effect, the average annual value was 23.3 billion won. The average annual value of social welfare effects if big data was not used was measured at 22.4 billion won. Therefore, it was estimated that the difference between the social welfare effect when the prediction using big data was used and when it was not was about 950 million won. When these results are applied to items other than onion items, the effect will be greater. It is judged that it can be used as basic data to prove the justification of the agricultural observation project. However, since the simple Harberger's triangle theory has the limitation of oversimplifying reality, it is necessary to evaluate the economic value through various methods such as measuring the effect of agricultural observation under a more realistic rational expectation hypothesis in future studies.

빅데이터를 위한 가치사슬 설계 (Modeling of Value Chain for Big Data)

  • 이상원;박승범;이주민;안현섭;최용구
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2015년도 제51차 동계학술대회논문집 23권1호
    • /
    • pp.277-278
    • /
    • 2015
  • The volume sub-challenge requires novel approaches, often referred to as Big Data technologies and methodologies. Data is generated constantly in an ever growing number of places and by an ever growing number of actors while a large proportion of potentially re-usable data resides within silos within institutions or companies. These are needed when conventional database technologies cannot be applied to storage and computing issues. The issue of big data has been referred to as the next frontier in computing. In this paper, we research on factors to design an organizational value chain for Big Data.

  • PDF

마케팅 관점으로 본 빅 데이터 분석 사례연구 : 은행업을 중심으로 (Big Data Analytics Case Study from the Marketing Perspective : Emphasis on Banking Industry)

  • 박성수;이건창
    • 한국IT서비스학회지
    • /
    • 제17권2호
    • /
    • pp.207-218
    • /
    • 2018
  • Recently, it becomes a big trend in the banking industry to apply a big data analytics technique to extract essential knowledge from their customer database. Such a trend is based on the capability to analyze the big data with powerful analytics software and recognize the value of big data analysis results. However, there exits still a need for more systematic theory and mechanism about how to adopt a big data analytics approach in the banking industry. Especially, there is no study proposing a practical case study in which big data analytics is successfully accomplished from the marketing perspective. Therefore, this study aims to analyze a target marketing case in the banking industry from the view of big data analytics. Target database is a big data in which about 3.5 million customers and their transaction records have been stored for 3 years. Practical implications are derived from the marketing perspective. We address detailed processes and related field test results. It proved critical for the big data analysts to consider a sense of Veracity and Value, in addition to traditional Big Data's 3V (Volume, Velocity, and Variety), so that more significant business meanings may be extracted from the big data results.

The Impact of Big Data Investment on Firm Value

  • Min, Ji-Hong;Bae, Jung-Ho
    • 유통과학연구
    • /
    • 제13권9호
    • /
    • pp.5-11
    • /
    • 2015
  • Purpose - The purpose of this research is to provide insights that can be used for deliberate decision making around challenging big data investments by measuring the economic value of such big data implementations. Research design, data, and methodology - We perform empirical research through an event study. To this end, we measure actual abnormal returns of companies that are triggered by their investment announcements in big data, or firm size information, during the three-year research period. The research period targets a timeframe after the introduction of big data at Korean firms listed on the Korea stock markets. Results - Our empirical findings discover that on the event day and the day after, the abnormal returns are significantly positive. In addition, our further examination of firm size impacts on the abnormal returns does not show any evidence of an effect. Conclusions - Our research suggests that an event study can be useful as an alternative means to measure the return on investment (ROI) for big data in order to lessen the difficulties or decision making around big data investments.

A Big Data-Driven Business Data Analysis System: Applications of Artificial Intelligence Techniques in Problem Solving

  • Donggeun Kim;Sangjin Kim;Juyong Ko;Jai Woo Lee
    • 한국빅데이터학회지
    • /
    • 제8권1호
    • /
    • pp.35-47
    • /
    • 2023
  • It is crucial to develop effective and efficient big data analytics methods for problem-solving in the field of business in order to improve the performance of data analytics and reduce costs and risks in the analysis of customer data. In this study, a big data-driven data analysis system using artificial intelligence techniques is designed to increase the accuracy of big data analytics along with the rapid growth of the field of data science. We present a key direction for big data analysis systems through missing value imputation, outlier detection, feature extraction, utilization of explainable artificial intelligence techniques, and exploratory data analysis. Our objective is not only to develop big data analysis techniques with complex structures of business data but also to bridge the gap between the theoretical ideas in artificial intelligence methods and the analysis of real-world data in the field of business.