• Title/Summary/Keyword: bidirectional magnetic field

Search Result 4, Processing Time 0.018 seconds

In-plane and out-of-plane waves in nanoplates immersed in bidirectional magnetic fields

  • Kiani, Keivan;Gharebaghi, Saeed Asil;Mehri, Bahman
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.65-76
    • /
    • 2017
  • Prediction of the characteristics of both in-plane and out-of-plane elastic waves within conducting nanoplates in the presence of bidirectionally in-plane magnetic fields is of interest. Using Lorentz's formulas and nonlocal continuum theory of Eringen, the nonlocal elastic version of the equations of motion is obtained. The frequencies as well as the corresponding phase and group velocities pertinent to the in-plane and out-of-plane waves are analytically evaluated. The roles of the strength of in-plane magnetic field, wavenumber, wave direction, nanoplate's thickness, and small-scale parameter on characteristics of waves are discussed. The obtained results show that the in-plane frequencies commonly grow with the in-plane magnetic field. However, the transmissibility of the out-of-plane waves rigorously depends on the magnetic field strength, direction of the propagated transverse waves, small-scale parameter, and thickness of the nanoplate. The criterion for safe transferring of the out-of-plane waves through the conducting nanoplate immersed in a bidirectional magnetic field is also explained and discussed.

Design of Local Field Switching MRAM (Local Field Switching 방식의 MRAM 설계)

  • Lee, Gam-Young;Lee, Seung-Yeon;Lee, Hyun-Joo;Lee, Seung-Jun;Shin, Hyung-Soon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.1-10
    • /
    • 2008
  • In this paper, we describe a design of a 128bit MRAM based on a new switching architecture which is Local Field Switching(LFS). LFS uses a local magnetic field generated by the current flowing through an MTJ. This mode reduces the writing current since small current can induce large magnetic field because of close distance between MTJ and the current. It also improves the cell selectivity over using conventional MTJ architecture because it doesn't need a digit line for writing. The MRAM has 1-Transistor 1-Magnetic Tunnel Junction (IT-1MTJ) memory cell structure and uses a bidirectional write driver, a mid-point reference cell block and a current mode sense amplifier. CMOS emulation cell is adopted as an LFS-MTJ cell to verify the operation of the circuit without the MTJ process. The memory circuit is fabricated using a $0.18{\mu}m$ CMOS technology with six layers o) metal and tested on custom board.

Dynamic Analysis and Experiments of Moving-Magnet Linear Actuator with/without Spring (스프링 유무에 따른 가동자석형 직선형 액추에이터의 동특성해석 및 실험)

  • Jang Seok-Myeong;Choi Jang-Young;You Dae-Joon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.21-26
    • /
    • 2006
  • This paper deals with the dynamic analysis and experiments of moving-magnet linear actuator with/without spring. On the basis of two dimensional (2-D) analytical solutions and experiments, control parameters such as thrust constant, back-emf constant, inductance and resistance are obtained. And then, dynamic simulation algorithm is established from the voltage and motion equation. Finally, for various values of frequency, dynamic simulation results for characteristics of current and displacement of moving-magnet linear actuator with and without spring are presented and confirmed through the experiments. In particular, This paper applies the PWM voltage waveform obtained from a DSP for bidirectional voltage drive to the actuator.

Accurate Localization of Metal Electrodes Using Magnetic Resonance Imaging (자기공명영상을 이용한 금속전극의 정확한 위치 결정)

  • Joe, Eun-Hae;Ghim, Min-Oh;Ha, Yoon;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.1
    • /
    • pp.11-21
    • /
    • 2011
  • Purpose : Localization using MRI is difficult due to susceptibility induced artifacts caused by metal electrodes. Here we took an advantage of the B0 pattern induced by the metal electrodes by using an oblique-view imaging method. Materials and Methods : Metal electrode models with various diameters and susceptibilities were simulated to understand the aspect of field distortion. We set localization criteria for a turbo spin-echo (TSE) sequence usingconventional ($90^{\circ}$ view) and $45^{\circ}$ oblique-view imaging method through simulation of images with various resolutions and validated the criteria usingphantom images acquired by a 3.0T clinical MRI system. For a gradient-refocused echo (GRE) sequence, which is relatively more sensitive to field inhomogeneity, we used phase images to find the center of electrode. Results : There was least field inhomogeneity along the $45^{\circ}$ line that penetrated the center of the electrode. Therefore, our criteria for the TSE sequence with $45^{\circ}$ oblique-view was coincided regardless of susceptibility. And with $45^{\circ}$ oblique-view angle images, pixel shifts were bidirectional so we can detect the location of electrodes even in low resolution. For the GRE sequence, the $45^{\circ}$ oblique-view anglemethod madethe lines where field polarity changes become coincident to the Cartesian grid so the localization of the center coordinates was more facilitated. Conclusion : We suggested the method for accurate localization of electrode using $45^{\circ}$ oblique-view angle imaging. It is expected to be a novelmethodto monitoring an electrophysiological brain study and brain neurosurgery.