• Title/Summary/Keyword: bidirectional functionally graded material

Search Result 12, Processing Time 0.015 seconds

Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading

  • Meksi, Abdeljalil;Benyoucef, Samir;Sekkal, Mohamed;Bouiadjra, Rabbab Bachir;Selim, Mahmoud M.;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.215-228
    • /
    • 2021
  • This paper investigates the effect of micromechanical models on the bending behavior of bidirectional functionally graded (BDFG) beams subjected to different mechanical loading. The material properties of the beam are considered to be graded in both axial and thickness directions according to a power law. The beam's behavior is modeled by the mean of quasi 3D displacement field that contain undetermined integral terms and involves a reduced unknown functions. Navier's method is employed to determine and compute the displacements and stress for a simply supported beam. Different homogenization schemes such as Voigt, Reus, and Mori-Tanaka are employed to analyze the response of the BDFG beam subjected to linear, uniform, exponential and sinusoidal distributed loading. The results obtained by the present method are compared with available results in the literature and a good agreement was found. Several numerical results are presented in tabular form and in figures to examine the effects of the material gradation, micromechanical models and types of loading on the bending response of BDFG beams. It can be concluded that the present theory is not only accurate but also simple in predicting the bending response of BDFG beam subjected to different static loads.

Torsional vibration analysis of bi-directional FG nano-cone with arbitrary cross-section based on nonlocal strain gradient elasticity

  • Noroozi, Reza;Barati, Abbas;Kazemi, Amin;Norouzi, Saeed;Hadi, Amin
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.13-24
    • /
    • 2020
  • In this paper, for the first time based on the nonlocal strain gradient theory the effect of size dependency in torsional vibration of bi-direction functionally graded (FG) nonlinear nano-cone is study. The material properties were assumed to vary according to the arbitrary function in radial and axial directions. The Navier equation and boundary conditions of the size-dependent bidirectional FG nonlinear nano-cone were derived by Hamilton's principle. These equations were solved by employing the generalized differential quadrature method (GDQM). The presented model can turn into the classical model if the material length scale parameters are taken to be zero. The effects of some parameters, such as inhomogeneity constant, cross-sectional area parameter and small-scale parameters, were studied. As an essential result of this study can be stated that an FG nano-cone model based on the nonlocal elasticity theory behaves softer and based on the strain gradient theory behaves harder.