• Title/Summary/Keyword: bidimensional basis functions

Search Result 2, Processing Time 0.018 seconds

A FAST ALGORITHM FOR REGION-ORIENTED TEXTURE CODING

  • Bae, Cheol-Soo;Kim, Hyun-yul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.4
    • /
    • pp.205-211
    • /
    • 2014
  • This paper addresses the framework of object-oriented image coding, describing a new algorithm, based on monodimensional Legendre polynomials, for texture approximation. Through the use of 1D orthogonal basis functions, the computational complexity which usually makes prohibitive most of 2D region-oriented approaches is significantly reduced, while only a slight increment of distortion is introduced. In the aim of preserving the bidimensional intersample correlation of the texture information as much as possible, suitable pseudo-bidimensional basis functions have been used, yielding significant improvements with respect to the straightforward 1D approach. The algorithm has been experimented for coding still images as well as motion compensated sequences, showing interesting possibilities of application for very low bitrate video coding.

A Fast Algorithm for Region-Oriented Texture Coding

  • Choi, Young-Gyu;Choi, Chong-Hwan;Cheong, Ha-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.519-525
    • /
    • 2016
  • This paper addresses the framework of object-oriented image coding, describing a new algorithm, based on monodimensional Legendre polynomials, for texture approximation. Through the use of 1D orthogonal basis functions, the computational complexity which usually makes prohibitive most of 2D region-oriented approaches is significantly reduced, while only a slight increment of distortion is introduced. In the aim of preserving the bidimensional intersample correlation of the texture information as much as possible, suitable pseudo-bidimensional basis functions have been used, yielding significant improvements with respect to the straightforward 1D approach. The algorithm has been experimented for coding still images as well as motion compensated sequences, showing interesting possibilities of application for very low bitrate video coding.