• Title/Summary/Keyword: bicarbonate transport

Search Result 19, Processing Time 0.021 seconds

Mechanisms of proton secretion by carbonic anhydrase-containing cells in turtle bladder (Turtle Bladder의 탄산탈수효소를 함유한 세포에 의한 Proton 분비기작)

  • Jeon, Jin-Seok
    • Applied Microscopy
    • /
    • v.22 no.2
    • /
    • pp.84-96
    • /
    • 1992
  • This study was carried out to examine the $H^+$ transport mechanism by observing the properties of cellular membrane having an ${\alpha}$ type of carbonic anhydrase (CA)-containing cells in turtle urinary bladder. The urinary bladder consists of a heterogenous population of cells. As a result of fine observation with traditional thin-section electron microscopy. the bladder epithelium has three different cell types on mucosal surface. They are a basal cell, a granular cell and a third type of CA-rich cell. The CA-rich cells are divided into two distinct smaller groups within them and called them ${\alpha}$ type and ${\beta}$ type of CA cells. The ${\alpha}$ type of CA cells are responsible for the proton secretion using the proton pumps on the apical plasma membrane, while the ${\beta}$ type of CA cells secrete bicarbonate via an oppositely-directed proton pumps in their basolateral plasma membrane. After performing the freeze-fracture technique, it was shown that there were distributed a large number of intramembranous particles having a special structure on the apical membrane of ${\alpha}$ type of CA-rich cells in the process of their $H^+$ secretion. In turtle bladder ${\alpha}$ type of CA-rich cells, this particle was the only prominent structure in the apical membrane. These intramembrane rod-shaped particles probably represent the integral membrane components of the proton pump. This result may explain that carbonic anhydrase within epithelial cell of urinary bladder takes part in formation of $H^+$ and bicarbonate, that active transport of $H^+$ is done, and that the reabsorption of bicarbonate suggests transport mechanism containing $H^+$ secretion. However, it seems that more studies are required for considering their regular transport pathway.

  • PDF

Studies on Transport Mechanisms of Turtle Bladder I . Epithelium of Urinary Bladder (Turtle bladder의 수송기작(輸送機作)에 관한 연구 : I. 방광(膀胱)의 상피조직(上皮組織))

  • Jeon, Jin-Seok
    • Applied Microscopy
    • /
    • v.19 no.2
    • /
    • pp.119-137
    • /
    • 1989
  • It has been shown in this and earlier investigation that the turtle bladder mucosa has three main cell types on their mucosal surface. They are the granular cells, ${\alpha}$ CA cells, and ${\beta}$ CA cells. The three major transport mechanisms that occurs in the turtle bladder are sodium reabsorption, proton secretion, and bicarbonate secretion. In the present work the trans-port mechanisms by bladder epithelial cells of freshwater turtle, Pseudemys scripta, are summarized as follows. 1. The granular cells play an important role in sodium transport, while the ${\alpha}$ and ${\beta}$ CA cells do not appear to play a determining role in sodium transport. 2. It appears that the active sodium transport in the granular cells occurs in two-step process, implying that first, sodium diffuses into the cells, followed by an energy-dependent efflux step, which is catalyzed by the ouabain-sensitive Na-K ATPase. 3. The ${\alpha}$ type of CA cells are responsible for the proton secretion using the proton pump on the apical plasma membrane, while the ${\beta}$ type of CA cells are believed to be responsible for bicarbonate secretion. 4. When looked at under freeze-fracture electron microscopy, the apical plasma membrane of ${\alpha}$ cells have a characteristic population of rod-shaped intramembranous particles which are believed to be components of the proton pumps. Conversely, ${\beta}$ type of CA cells show rod-shaped particles in their basolateral plasma membranes, which is consistent with the proton absorptive, bicarbonate secretory mechanism. 5. In the turtle bladder, the ${\alpha}$ and ${\beta}$ type of cells are believed to be both responsible for proton transport, but in opposite directions.

  • PDF

Plasma Membrane Transporters for Lead and Cadmium

  • Bressler Joseph P.;Olivi Luisa;Cheong Jae Hoon;Kim Yongbae;Bannon Desmond
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2004.11a
    • /
    • pp.50-61
    • /
    • 2004
  • Lead and cadmium are potent environmental toxicants that affect populations living in Europe, Americas, and Asia. Identifying transporters for lead and cadmium could potentially 1 help us better understand possible risk factors. The iron transporter divalent metal transporter 1(DMT1) mediates intestinal transport of cadmium, and lead in yeast and fibroblasts overexpressing DMT1. In human intestinal cells knocking down expression of DMT1 attenuated uptake of cadmium and iron but not lead. A possible explanation is the expression of a second transporter for lead in intestine. In astrocytes, however, DMT1 appears to transport lead in an extracellular buffer at pH value. At neutral pH, transport was not mediated by DMT1 but rather by a transporter that is stimulated by bicarbonate and inhibited by 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonic acid. The identity of this lead transporter is under study.

  • PDF

Effects of Dietary Buffer Material for Chicken Meat Grades and PSE Incidence in Broilers under Transport Heat Stress (고온기 육계의 수송 스트레스에 대한 버퍼제 급여에 따른 닭고기 품질 및 PSE 발생에 미치는 영향)

  • Chae, Hyun-Seok;Choi, Hee-Chul;Na, Jae-Cheon;Jang, Ae-Ra;Kim, Min-Ji;Bang, Han-Tae;Kang, Hwan-Ku;Kim, Dong-Wook;Seo, Ok-Suk;Park, Sung-Bok;Ham, Jun-Sang
    • Korean Journal of Poultry Science
    • /
    • v.37 no.2
    • /
    • pp.131-137
    • /
    • 2010
  • The present study has been performed to suggest a method to decrease the adverse effects of transportation on chicken meat quality. The groups were prepared as follows; Control group and three groups of treatments (sodium phosphate, sodium bicarbonate and magnesium sulfate). The chicken fed magnesium sulfate showed higher chicken meat quality compared to control and other treatment groups. Also, minor and severe PSE incidence of chicken breast was found at 88% in sodium phosphate group, 24% in sodium bicarbonate group and 56% in magnesium sulfate group. Control group showed 92% higher minor and severe PSE incidence of chicken breast compared to other groups. In control group, the external bruise of chicken showed 32% but 22, 24 and 44% in other treatment groups, respectively. Lightness ($L^*$) of chicken containing sodium phosphate treatment, sodium bicarbonate treatment and magnesium sulfate were 67.05, 66.27 and 65.89, while Lightness ($L^*$) of chicken containing control group was decreased of 67.88. In conclusion, dietary buffer material (sodium phosphate, sodium bicarbonate, magnesium sulfate) under heat stress decreased adverse effects including death, wound or abnormality of chickens.

Molecular Mechanism of Pancreatic Bicarbonate Secretion

  • Lee, Min-Goo;Kim, Je-Woo;Kim, Kyung-Hwan;Muallem, Shmuel
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.3
    • /
    • pp.131-138
    • /
    • 2002
  • Thanks to recent progress in availability of molecular and functional techniques it became possible to search for the basic molecular and cellular processes that mediate and control $HCO_3{^-}$ and fluid secretion by the pancreatic duct. The coordinated action of various transporters on the luminal and basolateral membranes of polarized epithelial cells mediates the transepithelial $HCO_3{^-}$ transport, which involves $HCO_3{^-}$ absorption in the resting state and $HCO_3{^-}$ secretion in the stimulated state. The overall process of HCO3 secretion can be divided into two steps. First, $HCO_3{^-}$ in the blood enters the ductal epithelial cells across the basolateral membrane either by simple diffusion in the forms of $CO_2$ and $H_2O$ or by the action of an $Na^+-coupled$ transporter, a $Na^+-HCO_3$ cotranporter (NBC) identified as pNBC1. Subsequently, the cells secrete $HCO_3{^-}$ to the luminal space using at least two $HCO_3{^-}$ exit mechanisms at the luminal membrane. One of the critical transporters needed for all forms of $HCO_3{^-}$ secretion across the luminal membrane is the cystic fibrosis transmembrane conductance regulator (CFTR). In the resting state the pancreatic duct, and probably other $HCO_3{^-}$ secretory epithelia, absorb $HCO_3{^-}.$ Interestingly, CFTR also control this mechanism. In this review, we discuss recent progress in understanding epithelial $HCO_3{^-}$ transport, in particular the nature of the luminal transporters and their regulation by CFTR.

A Study of a Sodium Bicarbonate Cotransporter Functionally Expressed in Xenopus laevis Oocytes

  • Lee, Tae-Hwan;Kim, Sung-Beom;Park, Kyung-Pyo
    • Journal of Korean Dental Science
    • /
    • v.4 no.2
    • /
    • pp.73-78
    • /
    • 2011
  • Purpose: $HCO_3{^-}$ is the most important ion to buffer the acidity of saliva. The transport of $HCO_3{^-}$ is mediated by electrogenic $Na^+/HCO_3{^-}$ cotransporter 1 (NBCe1), which expressed in various tissues including salivary glands, kidney and pancreas, etc. This experiment was performed to investigate regulatory site of NBCe1involved in the pH regulation using various mutants of NBCe1. Materials and Methods: Human parotid gland NBCe1 (hpNBCe1) and mutants by deletion of 1~285 bp and 1~1,035 bp were prepared. After microinjection of each cRNA to oocytes of Xenopus laevis, they were incubated for 2~3 days. The function of each protein was tested by electrophysiological method. Results: When oocytes were exposed to the $HCO_3{^-}$ buffered solution, 1~285 bp deleted mutant hpNBCe1 evoked a marked hyperpolarization ranging from -90 mV to -160 mV (average: -134 mV; n=12) compared to the full length of hpNBCe1. Although 1~1,035 bp deleted mutant hpNBCe1 was also expressed in the plasma membrane, but it did not show any changes of membrane potentials. Conclusion: Our deletion mutant study demonstrated that 1~285 bp of the NBCe1 is the major domain to determine $HCO_3{^-}$ transport ratio.

Plasma Membrane Transporters for Lead and Cadmium

  • Bressler, Joseph P.;Olivi, Luisa;Kim, Yong-Bae;Bannon, Desmond;Ko, Hong-Sook;Cheong, Jae-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Lead and cadmium are potent environmental toxicants that affect populations living in Europe. Americas, and Asia. Identifying transporters for lead and cadmium could potentially 1 help us better understand possible risk factors. The iron transporter, divalent metal transporter 1 (DMT1), mediates intestinal transport of cadmium, and lead in yeast and fobroblasts overexpressing DMT1. In human intestinal cells knocking down expression of DMT1 attenuated uptake of cadmium and iron but not lead. A possible explanation is the expression of a second transporter for lead in intestine. In astrocytes, however, DMT1 appears to transport lead in an extracellular buffer at pH value. At neutral pH, transport was not mediated by DMT1 but rather by a transporter that is stimulated by bicarbonate and inhibited by 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonic acid. The identity of this lead transporter will beverified by future study.

Mechanism of Urinary Excretion of Sulfadiazine in the Rabbit (가토(家兎)에 있어서 Sulfadiazine의 뇨중(尿中) 배설기전(排泄機轉))

  • Ko, Suk-Tai;Chung, Chong-Nam;Ko, Ok-Hyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.2 no.1
    • /
    • pp.18-30
    • /
    • 1972
  • Renal pathways for excretion of sulfadiazine has been studied by standard clearance technique in the rabbit. 1. Large part of sulfadiazine filtered in the glomeruli is reabsorbed in the tubules, as visualized from the fact that Csd (clearance of sulfadiazine) amounts only a fraction of simultaneously measured Ccr (GFR). 2. Csd changed linearly with the rate of urine flow, whether it is increased by the duir etics or decreased by clamping u reter. 3. Csd remained unchanged until the plasma level of the Csdremained unchanged drug reached 10.0 mg%, and the amount transported in the tubules increased linearly with the increase in the load, exhibiting No maximum capacity for transport. 4. Csd was increased by 2,4-dinitrophenol which is an uncoupling agent of oxidative phosphorylation and decreased by probenecid which is on uricosuric agent. 5. During sodium bicarbonate infusion net secretion of sulfadiazine by tubules observed. All the evidences obtained in the rabbit indicated that sulfadiazine was reabsorbed by active, energy-requiring, or passive, simple diffusion, process, and secreted simultaneously by a probenecid-sensitive, active procss.

  • PDF