• Title/Summary/Keyword: biaxial eccentricity

Search Result 13, Processing Time 0.02 seconds

Numerical investigation of The characteristics of Biaxial Flexure Specimens (수치해석을 이용한 이방향 휨인장 시험체의 특성분석)

  • Kim, Ji-Hwan;Zi, Goang-Seup;Kang, Jin-Gu;Oh, Hong-Seob
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.614-617
    • /
    • 2008
  • This paper presents the numerical investigation of the characteristics of biaxial flexure specimens for the Biaxial Flexure Test(BFT) which was recently developed to measure the biaxial tensile strength of concrete. Using FEM, the effect of size and eccentricity on the specimens was evaluated. The parameters such as radious of the support and the loadings, thickness and free length were studied. The results of the FE analysis were entirely consistent with the predictive solution, when b/agt;0.4, h/alt;0.6 and the thickness of the specimens were increased. On the other hands, when b/agt;0.4, those with lesser free length showed good results. To limit the difference between the stresses at the end points of 2b as the specimen was sustained and the stress at the center point of the specimen are not over 10%, lateral eccentricity was analyzed to be in the limits of 3%.

  • PDF

Strength and ductility of biaxially loaded high strength RC short square columns wrapped with GFRP jackets

  • Hodhod, O.A.;Hassan, W.;Hilal, M.S.;Bahnasawy, H.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.6
    • /
    • pp.727-745
    • /
    • 2005
  • The present study is an experimental investigation into the behaviour of high strength concrete square short columns subjected to biaxial bending moments and strengthened by GFRP laminates. The main objectives of the study are: to evaluate the improvement in the structural performance of HSC short square columns subjected to small biaxial eccentricity when strengthened by externally applied FRP laminates, and to investigate the optimum arrangement and amount of FRP laminates to achieve potential enhancement in structural performance especially ductility. The parameters considered in this study are: number of FRP layers and arrangement of wraps. The load eccentricity is kept corresponding to e/t = 0.125 in two perpendicular directions to the columns principal axes, and the wraps are applied in single or double layers (partial or full wrapping). In the present work, test results of five full scale concrete columns are presented and discussed. The study has shown that FRP wraps can be used successfully to enhance the ductility of HSC columns subjected to biaxial bending by 300%.

Numerical investigation on the response of circular double-skin concrete-filled steel tubular slender columns subjected to biaxial bending

  • Abu-Shamah, Awni;Allouzi, Rabab
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.533-549
    • /
    • 2020
  • Recently, Concrete-filled double skin steel tubular (CFDST) columns have proven an exceptional structural resistance in terms of strength, stiffness, and ductility. However, the resistance of these column members can be severely affected by the type of loading in which bending stresses increase in direct proportion with axial load and eccentricity value. This paper presents a non-linear finite element based modeling approach that studies the behavior of slender CFDST columns under biaxial loading. Finite element models were calibrated based on the outcomes of experimental work done by other researchers. Results from simulations of slender CFDST columns under axial loading eccentric in one direction showed good agreement with the experimental response. The calibrated models are expanded to a total of thirty models that studies the behavior of slender CFDST columns under combined compression and biaxial bending. The influences of parameters that are usually found in practice are taken into consideration in this paper, namely, eccentricity-to-diameter (e/D) ratios, slenderness ratios, diameter-to-thickness (D/t) ratios, and steel contribution ratios. Finally, an analytical study based on current code provisions is conducted. It is concluded that South African national standards (2011) provided the most accurate results contrasted with the Eurocode 4 (2004) and American Institute of Steel Construction (2016) that are found to be conservative. Accordingly, correction factors are proposed to the current design guidelines to provide more satisfactory results.

A comprehensive FE model for slender HSC columns under biaxial eccentric loads

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.;Sun, Wei
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • A finite element (FE) model for analyzing slender reinforced high-strength concrete (HSC) columns under biaxial eccentric loading is formulated in terms of the Euler-Bernoulli theory. The cross section of columns is divided into discrete concrete and reinforcing steel fibers so as to account for varied material properties over the section. The interaction between axial and bending fields is introduced in the FE formulation so as to take the large-displacement or P-delta effects into consideration. The proposed model aims to be simple, user-friendly, and capable of simulating the full-range inelastic behavior of reinforced HSC slender columns. The nonlinear model is calibrated against the experimental data for slender column specimens available in the technical literature. By using the proposed model, a numerical study is carried out on pin-ended slender HSC square columns under axial compression and biaxial bending, with investigation variables including the load eccentricity and eccentricity angle. The calibrated model is expected to provide a valuable tool for more efficiently designing HSC columns.

Assessing asymmetric steel angle strength under biaxial eccentric loading

  • Shu-Ti Chung;Wei-Ting Hsu
    • Structural Engineering and Mechanics
    • /
    • v.91 no.5
    • /
    • pp.517-526
    • /
    • 2024
  • Due to the asymmetric cross-section of unequal-angle steel, the application of loads can induce axial rotation, leading to a series of buckling failure behaviors. Special attention must be paid during the design process. The present study aims to analyze the structural behavior of asymmetric steel angle members under various eccentric loading conditions, considering the complex biaxial bending interaction that arises when the angle steel is connected to the panel. Several key factors are investigated in this paper, including the effects of uniaxial and biaxial eccentricity on the structural behavior and the eccentric axial compression strength of long and short legs at different load application points. Potential risks associated with the specified load points, based on the AISC specifications, are also discussed. The study observed that the strength values of the members exhibited significant changes when the eccentric load deviates from the specified point. The relative position of the eccentric load point and the slenderness ratio of the member are critical influencing factors. Overall, this research intends to enhance the accuracy and reliability of strength analysis methods for asymmetric single angle steel members, providing valuable insights and guidance for a safer and more efficient design.

Prediction of Error due to Eccentricity of Hole in Hole-Drilling Method Using Neural Network

  • Kim, Cheol;Yang, Won-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1359-1366
    • /
    • 2002
  • The measurement of residual stresses by the hole-drilling method has been used to evaluate residual stresses in structural members. In this method, eccentricity can usually occur between the hole center and rosette gage center. In this study, we obtained the magnitude of the error due to eccentricity of a hole through the finite element analysis. To predict the magnitude of the error due to eccentricity of a hole in the biaxial residual stress field, it could be learned through the back propagation neural network. The prediction results of the error using the trained neural network showed good agreement with FE analyzed results.

An Experimental Study on the Behavior of Reinforced Concrete Columns Subjected to Axial Force and Biaxial Bending (2축 휨과 축력을 동시에 받는 철근콘크리트 기둥에 대한 실험적 연구)

  • 김진근;이상순;이수곤;김선영
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.55-62
    • /
    • 1999
  • When stress is beyond elastic limit or cracks occur in a reinforced concrete member subjected to axial force and biaxial bending, curvature about each principal axis of uncracked section is influenced by axial force and bending moments about both major and minor principal axes. It is mainly due to the translation and rotation of principal axes of the cross section after cracking. Recently, by considering these effects, a numerical method predicting the behavior of concrete columns subjected to axial force and biaxial bending was proposed. In this study, in order to verify the proposed numerical method and investigate the effects of cracking on the behavior of reinforced concrete columns, a series of tests were carried out for 16 tied reinforced concrete columns with 100×100 mm square and 200×100 mm rectangular sections under various loading conditions. The angle between the direction of eccentricity and the major principal axis of uncracked section were 0, 30, 40° for the square section and 0, 30, 45, 60, 90° for the rectangular section, respectively. A comparison between numerical predictions and test results shows good agreements in ultimate loads, axial force-lateral deflection relations, and lateral deflection trajectories. It is also found, in this limited investigation, that the ACI's moment magnifier method is conservative in both uniaxial and biaxial loading conditions.

A study on strength of steel square tubular columns filled with high strength concrete under biaxial eccentric load (2축휨을 받는 고강도콘크리트충전 각형강관기둥의 내력에 관한 연구)

  • Seo, Seong Yeon;Keigo, Tsuda;Atsushi, Nakamura
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.567-576
    • /
    • 2002
  • Maximum-strength concrete-ailed steel square tubular columns were tested under concentric and biaxial eccentric load. Buckling length-section depth ratio $L_k/D$, magnitude of eccentricity e, and angle of eccentric load ${\theta}$ were selected as experimental parameters. Strength and behavior were also examined. Test results showed that the maximum strength of columns under biaxial eccentric load could be predicted using the previously proposed strength formula of columns under uniaxial eccentric load. Likewise, the behavior and maximum strength of columns could be predicted using the analysis.

Experimental tests on biaxially loaded concrete-encased composite columns

  • Tokgoz, Serkan;Dundar, Cengiz
    • Steel and Composite Structures
    • /
    • v.8 no.5
    • /
    • pp.423-438
    • /
    • 2008
  • This paper reports an experimental investigation of the behaviour of concrete-encased composite columns subjected to short-term axial load and biaxial bending. In the study, six square and four L-shaped cross section of both short and slender composite column specimens were constructed and tested to examine the load-deflection behaviour and to obtain load carrying capacities. The main variables in the tests were considered as eccentricity of applied axial load, concrete compressive strength, cross section, and slenderness effect. A theoretical procedure considering the nonlinear behaviour of the materials is proposed for determination of the behaviour of eccentrically loaded short and slender composite columns. Two approaches are taken into account to describe the flexural rigidity (EI) used in the analysis of slender composite columns. Observed failure mode and experimental and theoretical load-deflection behaviour of the specimens are presented in the paper. The composite column specimens and also some composite columns available in the literature have been analysed and found to be in good agreement with the test results.

An Experimental Study on the Structural Capacities of Steel-Concrete Column (Steel-Concrete Column의 구조성능에 관한 실험 연구)

  • Kim, Seong Jae;Park, Soon Jeon;Jeong, Sug Chang;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.823-834
    • /
    • 2002
  • Maximum-strength concrete-filled steel square tubular columns were tested under concentric and biaxial eccentric load. Buckling length-section depth ratio $L_k/D$, magnitude of eccentricity e, and angle of eccentric load ${\theta}$ were selected as experimental parameters. Strength and behavior were also examined. Test results showed that the maximum strength of columns under biaxial eccentric load could be predicted using the previously proposed strength formula of columns undr uniaxia eccentric load. Likewise, the behavior and maximum strength of columns could be predicted using the analysis.