• Title/Summary/Keyword: biaxial compression

Search Result 95, Processing Time 0.023 seconds

Study on the Reinforced Method of Doubler Plate in Ship Hull Structure (선박 이중판의 보강법 연구)

  • 함주혁
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.144-149
    • /
    • 2001
  • A study for the structural strength analysis on the doubler plate subjected to the axial, biaxial in-plane compression and shear load has been performed through the systematic evaluation process. In order to estimate the proper static strength of doubler plate, non-linear elasto-plastic analysis is introduced. Gap element modeling for contact effect between main plate and doubler is prepared and nonlinear analysis procedures are illustrated based on MSC/N4W . In addition, some design guides are suggested through the consideration of several important effects such as corrosion of main plate, doubler width, doubler length and doubler thickness. Finally theses results are compared with developed design formula based on the buckling strength and general trends and design guides according to the variation of design parameters are discussed.

  • PDF

Nonlinear analysis of reinforced concrete beam elements subject to cyclical combined actions of torsion, biaxial flexure and axial forces

  • Cocchi, Gian Michele;Tiriaca, Paolo
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.829-862
    • /
    • 2004
  • This paper presents a method for the nonlinear analysis of beam elements subjected to the cyclical combined actions of torsion, biaxial flexure and axial forces based on an extension of the disturbed compression field (DSFM). The theoretical model is based on a hybrid formulation between the full rotation of the cracks model and the fixed direction of the cracking model. The described formulation, which treats cracked concrete as an orthotropic material, includes a new approach for the evaluation of the re-orientation of both the compression field and the deformation field by removing the restriction of their coincidence. A new equation of congruence permits evaluating the deformation of the middle line. The problem consists in the solution of coupled nonlinear simultaneous equations expressing equilibrium, congruence and the constitutive laws. The proposed method makes it possible to determine the deformations of the beam element according to the external stresses applied.

The effect of compressive strain rate on biaxial compressive deformation characteristics of Al circular pipe (AI 원형 관의 2축 압축 변형특성에 미치는 압축속도의 영향)

  • Won, S.T.;Jung, H.J.;Ahn, H.J.;Cho, H.H.;Yoo, C.K.
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.23-26
    • /
    • 2008
  • In order to examine the deformation characteristics of Al circular pipe underthe biaxial compression, the horizontal biaxial compression die for the experiment was manufactured. From this, in the various compressive strain rate (1 mm/min. ${\sim}$ 400 mm/min.)conditions, the circular pipes, which were made by Al materials, were investigated based on the properties change of cross section area, punch load and deformation behavior. The tensile and compressive strains were evaluated from micro Vickers hardness tester. From these results, the punch load and deformation characteristic of Al circular pipes were highly changed in the compressive strain rate about 200 mm/min. The Al circular pipes had the tendency that the punch load decreased with increasing the compressive strain rate. In addition, following as the change of the shape and position of neutral axis due to the deformation proceeding of the circular pipe, the special point of the internal circular pipe at maximum load showed the maximum deformation strain and the maximum measured hardness value. The CAE (computer aided engineering) simulation using Deform-2D program was performed on the circular pipe in order to know and verify the exact compressive deformation behavior. From these results, the experimentally measured results were reasonably in good agreement with the simulation results.

  • PDF

Shear Deformation based on the Biaxial Tension-Compression Theory in Prestressed Concrete Members applied by Axial Loading (이축인장압축장이론에 기반한 PSC보의 전단변형)

  • Jeong, Jae-Pyong;Kim, Dae-Joong;Mo, Gui-Suk;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.281-284
    • /
    • 2006
  • ASCE-ACI Committee 426 and 445, on Shear and Torsion, well noted in their report that recent research work regarding shear and torsion had been devoted primarily to members. But it was not logical approach of PSC members applied by axial force based on the shear deformation in web element. And it was not included that the effect of axial is to shift the shear strain(or crack width) in the web element versus the applied shear curve up or down by the amount by which the biaxial tension-compression state varies. The shear strength also increases or decreases, so that the change in shear strain at service load due to the presence of axial load is to some extent changed. Generally, in corresponding beams the shear strain at service load is less in the beam subject to axial compression and greater in the beam subject to axial tension, than in the beam without axial load. In particular, however, no research were available on the shear deformation in shear of PSC members with web reinforcement, subject to axial force in addition to shear and bending. Therefore, this study was basically performed to develop the program for the calculation of the shear deformation based on the shear effect of axial force in prestressed concrete members.

  • PDF

A review of experimental and numerical studies on crack growth behaviour in rocks with pre-existing flaws

  • G. Sivakumar;V.B. Maji
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.333-366
    • /
    • 2023
  • Rock as a mass generally exhibits discontinuities, commonly witnessed in rock slopes and underground structures like tunnels, rock pillars etc. When these discontinuities experiences loading, a new crack emerges from them which later propagates to a macro scale level of failure. The failure pattern is often influenced by the nature of discontinuity, geometry and loading conditions. The study of crack growth in rocks, namely its initiation and propagation, plays an important role in defining the true strength of rock and corresponding failure patterns. Many researchers have considered the length of the discontinuity to be fully persistent on rock or rock-like specimens by both experimental and numerical methods. However, only during recent decades, there has been a substantial growth in research interest with non-persistent discontinuities where the crack growth and its propagation phenomenon were found to be much more complex than persistent ones. The non-persistence fractures surface is generally considered to be open and closed. Compared to open flaws, there is a difference in crack growth behaviour in closed or narrow flaws due to the effect of surface closure between them. The present paper reviews the literature that has contributed towards studying the crack growth behaviour and its failure characteristics on both open and narrow flaws subjected to uniaxial and biaxial compression loading conditions.

Stress-Strain Response of Polymer-Impregnated Concrete in Uniaxial and Biaxial Compression (일축 및 이축압축을 받는 폴리머침투콘크리트의 응력-변형률 특성)

  • 변근주;이상민;노병철;이용진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.93-98
    • /
    • 1991
  • Polymer-Impregnated Concrete(PIC) can be considered composite material of concrete and polymer and has superior properties compared to conventional cement concrete, such as strength, stiffness, toughness, durability, water-proofing, chemical resistance. However, so far, the usage of PIC has been limited to repairing materials and non-structural applications, due to the lack of the design criteria and the analytical model to determine structural behavior. The objective of this study is to define the stress-strain response and strength characteristics of PIC in uniaxial and various biaxial compressive loading. On the bases of experimental results, general stress-strain relation, biaxial failure envelope and strength evaluation formular of PIC made with normal aggregate and methylmethacrylate(MMA) are proposed.

  • PDF

Fracture Behaviors of Jointed Rock Model Containing an Opening Under Biaxial Compression Condition (이축압축 조건에서 공동이 존재하는 유사 절리암반 모델의 파괴 거동)

  • SaGong, Myung;Yoo, Jea-Ho;Park, Du-Hee;Lee, J.S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.17-30
    • /
    • 2009
  • Underground construction such as tunneling can induce damages on the surrounding rock mass, due to the stress concentration of in situ stresses and excessive energy input during construction sequence, such as blasting. The developed damage on the rock mass can have substantial influence on the mechanical and hydraulic behaviors of the rock masses around a tunnel. In this study, investigation on the generation of damage around an opening in a jointed rock model under biaxial compression condition was conducted. The joint dip angles employed are 30, 45, and 60 degrees to the horizontal, and the synthetic rock mass was made using early strength cement and water. From the biaxial compression test, initiation and propagation of tensile cracks at norm to the joint angle were found. The propagated tensile cracks eventually developed rock blocks, which were dislodged from the rock mass. Furthermore, the propagation process of the tensile cracks varies with joint angle: lower joint angle model shows more stable and progressive tensile crack propagation. The development of the tensile crack can be explained under the hypothesis that the rock segment encompassed by the joint set is subjected to the developing moment, which can be induced by the geometric irregularity around the opening in the rock model. The experiment results were simulated by using discrete element method PFC 2D. From the simulation, as has been observed from the test, a rock mass with lower joint angle produces wider damage region and rock block by tensile cracks. In addition, a rock model with lower joint angle shows progressive tensile cracks generation around the opening from the investigation of the interacted tensile cracks.

Numerical investigation on the response of circular double-skin concrete-filled steel tubular slender columns subjected to biaxial bending

  • Abu-Shamah, Awni;Allouzi, Rabab
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.533-549
    • /
    • 2020
  • Recently, Concrete-filled double skin steel tubular (CFDST) columns have proven an exceptional structural resistance in terms of strength, stiffness, and ductility. However, the resistance of these column members can be severely affected by the type of loading in which bending stresses increase in direct proportion with axial load and eccentricity value. This paper presents a non-linear finite element based modeling approach that studies the behavior of slender CFDST columns under biaxial loading. Finite element models were calibrated based on the outcomes of experimental work done by other researchers. Results from simulations of slender CFDST columns under axial loading eccentric in one direction showed good agreement with the experimental response. The calibrated models are expanded to a total of thirty models that studies the behavior of slender CFDST columns under combined compression and biaxial bending. The influences of parameters that are usually found in practice are taken into consideration in this paper, namely, eccentricity-to-diameter (e/D) ratios, slenderness ratios, diameter-to-thickness (D/t) ratios, and steel contribution ratios. Finally, an analytical study based on current code provisions is conducted. It is concluded that South African national standards (2011) provided the most accurate results contrasted with the Eurocode 4 (2004) and American Institute of Steel Construction (2016) that are found to be conservative. Accordingly, correction factors are proposed to the current design guidelines to provide more satisfactory results.

A comprehensive FE model for slender HSC columns under biaxial eccentric loads

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.;Sun, Wei
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • A finite element (FE) model for analyzing slender reinforced high-strength concrete (HSC) columns under biaxial eccentric loading is formulated in terms of the Euler-Bernoulli theory. The cross section of columns is divided into discrete concrete and reinforcing steel fibers so as to account for varied material properties over the section. The interaction between axial and bending fields is introduced in the FE formulation so as to take the large-displacement or P-delta effects into consideration. The proposed model aims to be simple, user-friendly, and capable of simulating the full-range inelastic behavior of reinforced HSC slender columns. The nonlinear model is calibrated against the experimental data for slender column specimens available in the technical literature. By using the proposed model, a numerical study is carried out on pin-ended slender HSC square columns under axial compression and biaxial bending, with investigation variables including the load eccentricity and eccentricity angle. The calibrated model is expected to provide a valuable tool for more efficiently designing HSC columns.

Numerical Study on Long-term Behavior of Flat Plate Subjected to In-Plane Compressive and Transverse Loads (바닥하중과 압축력을 받는 플랫 플레이트의 장기거동에 대한 해석적 연구)

  • 최경규;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.611-616
    • /
    • 2000
  • Numerical studies were carried out to investigate the long-term behavior of late plates in basement, subjected to combined in-plane compressive and transverse loads. For the numerical studies, a computer program of nonlinear finite element analysis was modified by adding function of creep and shrinkage analysis. This numerical method was verified by comparison with the existing experiments. Parametric studies were performed to investigate the strength variations of flat plates with three parameters; 1) loading sequence of floor load, compression and time 2) uniaxial an biaxial compression and 3) the ratio of dead to live load.

  • PDF