• Title/Summary/Keyword: bias and mean squared error

Search Result 82, Processing Time 0.028 seconds

Evaluating the prediction models of leaf wetness duration for citrus orchards in Jeju, South Korea (제주 감귤 과수원에서의 이슬지속시간 예측 모델 평가)

  • Park, Jun Sang;Seo, Yun Am;Kim, Kyu Rang;Ha, Jong-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.3
    • /
    • pp.262-276
    • /
    • 2018
  • Models to predict Leaf Wetness Duration (LWD) were evaluated using the observed meteorological and dew data at the 11 citrus orchards in Jeju, South Korea from 2016 to 2017. The sensitivity and the prediction accuracy were evaluated with four models (i.e., Number of Hours of Relative Humidity (NHRH), Classification And Regression Tree/Stepwise Linear Discriminant (CART/SLD), Penman-Monteith (PM), Deep-learning Neural Network (DNN)). The sensitivity of models was evaluated with rainfall and seasonal changes. When the data in rainy days were excluded from the whole data set, the LWD models had smaller average error (Root Mean Square Error (RMSE) about 1.5hours). The seasonal error of the DNN model had the similar magnitude (RMSE about 3 hours) among all seasons excluding winter. The other models had the greatest error in summer (RMSE about 9.6 hours) and the lowest error in winter (RMSE about 3.3 hours). These models were also evaluated by the statistical error analysis method and the regression analysis method of mean squared deviation. The DNN model had the best performance by statistical error whereas the CART/SLD model had the worst prediction accuracy. The Mean Square Deviation (MSD) is a method of analyzing the linearity of a model with three components: squared bias (SB), nonunity slope (NU), and lack of correlation (LC). Better model performance was determined by lower SB and LC and higher NU. The results of MSD analysis indicated that the DNN model would provide the best performance and followed by the PM, the NHRH and the CART/SLD in order. This result suggested that the machine learning model would be useful to improve the accuracy of agricultural information using meteorological data.

Predictive Growth Models of Bacillus cereus on Dried Laver Pyropia pseudolinearis as Function of Storage Temperature (저장온도에 따른 마른김(Pyropia pseudolinearis)의 Bacillus cereus 성장예측모델 개발)

  • Choi, Man-Seok;Kim, Ji Yoon;Jeon, Eun Bi;Park, Shin Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.5
    • /
    • pp.699-706
    • /
    • 2020
  • Predictive models in food microbiology are used for predicting microbial growth or death rates using mathematical and statistical tools considering the intrinsic and extrinsic factors of food. This study developed predictive growth models for Bacillus cereus on dried laver Pyropia pseudolinearis stored at different temperatures (5, 10, 15, 20, and 25℃). Primary models developed for specific growth rate (SGR), lag time (LT), and maximum population density (MPD) indicated a good fit (R2≥0.98) with the Gompertz equation. The SGR values were 0.03, 0.08, and 0.12, and the LT values were 12.64, 4.01, and 2.17 h, at the storage temperatures of 15, 20, and 25℃, respectively. Secondary models for the same parameters were determined via nonlinear regression as follows: SGR=0.0228-0.0069*T1+0.0005*T12; LT=113.0685-9.6256*T1+0.2079*T12; MPD=1.6630+0.4284*T1-0.0080*T12 (where T1 is the storage temperature). The appropriateness of the secondary models was validated using statistical indices, such as mean squared error (MSE<0.01), bias factor (0.99≤Bf≤1.07), and accuracy factor (1.01≤Af≤1.14). External validation was performed at three random temperatures, and the results were consistent with each other. Thus, these models may be useful for predicting the growth of B. cereus on dried laver.

Enhancing Medium-Range Forecast Accuracy of Temperature and Relative Humidity over South Korea using Minimum Continuous Ranked Probability Score (CRPS) Statistical Correction Technique (연속 순위 확률 점수를 활용한 통합 앙상블 모델에 대한 기온 및 습도 후처리 모델 개발)

  • Hyejeong Bok;Junsu Kim;Yeon-Hee Kim;Eunju Cho;Seungbum Kim
    • Atmosphere
    • /
    • v.34 no.1
    • /
    • pp.23-34
    • /
    • 2024
  • The Korea Meteorological Administration has improved medium-range weather forecasts by implementing post-processing methods to minimize numerical model errors. In this study, we employ a statistical correction technique known as the minimum continuous ranked probability score (CRPS) to refine medium-range forecast guidance. This technique quantifies the similarity between the predicted values and the observed cumulative distribution function of the Unified Model Ensemble Prediction System for Global (UM EPSG). We evaluated the performance of the medium-range forecast guidance for surface air temperature and relative humidity, noting significant enhancements in seasonal bias and root mean squared error compared to observations. Notably, compared to the existing the medium-range forecast guidance, temperature forecasts exhibit 17.5% improvement in summer and 21.5% improvement in winter. Humidity forecasts also show 12% improvement in summer and 23% improvement in winter. The results indicate that utilizing the minimum CRPS for medium-range forecast guidance provide more reliable and improved performance than UM EPSG.

Evaluation of Sensitivity and Retrieval Possibility of Land Surface Temperature in the Mid-infrared Wavelength through Radiative Transfer Simulation (복사전달모의를 통한 중적외 파장역의 민감도 분석 및 지표면온도 산출 가능성 평가)

  • Choi, Youn-Young;Suh, Myoung-Seok;Cha, DongHwan;Seo, DooChun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1423-1444
    • /
    • 2022
  • In this study, the sensitivity of the mid-infrared radiance to atmospheric and surface factors was analyzed using the radiative transfer model, MODerate resolution atmospheric TRANsmission (MODTRAN6)'s simulation data. The possibility of retrieving the land surface temperature (LST) using only the mid-infrared bands at night was evaluated. Based on the sensitivity results, the LST retrieval algorithm that reflects various factors for night was developed, and the level of the LST retrieval algorithm was evaluated using reference LST and observed LST. Sensitivity experiments were conducted on the atmospheric profiles, carbon dioxide, ozone, diurnal variation of LST, land surface emissivity (LSE), and satellite viewing zenith angle (VZA), which mainly affect satellite remote sensing. To evaluate the possibility of using split-window method, the mid-infrared wavelength was divided into two bands based on the transmissivity. Regardless of the band, the top of atmosphere (TOA) temperature is most affected by atmospheric profile, and is affected in order of LSE, diurnal variation of LST, and satellite VZA. In all experiments, band 1, which corresponds to the atmospheric window, has lower sensitivity, whereas band 2, which includes ozone and water vapor absorption, has higher sensitivity. The evaluation results for the LST retrieval algorithm using prescribed LST showed that the correlation coefficient (CC), the bias and the root mean squared error (RMSE) is 0.999, 0.023K and 0.437K, respectively. Also, the validation with 26 in-situ observation data in 2021 showed that the CC, bias and RMSE is 0.993, 1.875K and 2.079K, respectively. The results of this study suggest that the LST can be retrieved using different characteristics of the two bands of mid-infrared to the atmospheric and surface conditions at night. Therefore, it is necessary to retrieve the LST using satellite data equipped with sensors in the mid-infrared bands.

Development and Analysis of COMS AMV Target Tracking Algorithm using Gaussian Cluster Analysis (가우시안 군집분석을 이용한 천리안 위성의 대기운동벡터 표적추적 알고리듬 개발 및 분석)

  • Oh, Yurim;Kim, Jae Hwan;Park, Hyungmin;Baek, Kanghyun
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.531-548
    • /
    • 2015
  • Atmospheric Motion Vector (AMV) from satellite images have shown Slow Speed Bias (SSB) in comparison with rawinsonde. The causes of SSB are originated from tracking, selection, and height assignment error, which is known to be the leading error. However, recent works have shown that height assignment error cannot be fully explained the cause of SSB. This paper attempts a new approach to examine the possibility of SSB reduction of COMS AMV by using a new target tracking algorithm. Tracking error can be caused by averaging of various wind patterns within a target and changing of cloud shape in searching process over time. To overcome this problem, Gaussian Mixture Model (GMM) has been adopted to extract the coldest cluster as target since the shape of such target is less subject to transformation. Then, an image filtering scheme is applied to weigh more on the selected coldest pixels than the other, which makes it easy to track the target. When AMV derived from our algorithm with sum of squared distance method and current COMS are compared with rawindsonde, our products show noticeable improvement over COMS products in mean wind speed by an increase of $2.7ms^{-1}$ and SSB reduction by 29%. However, the statistics regarding the bias show negative impact for mid/low level with our algorithm, and the number of vectors are reduced by 40% relative to COMS. Therefore, further study is required to improve accuracy for mid/low level winds and increase the number of AMV vectors.

Analysis of Spatial Precipitation Field Using Downscaling on the Korean Peninsula (상세화 기법을 통한 한반도 공간 강우장 분석)

  • Cho, Herin;Hwang, Seokhwan;Cho, Yongsik;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1129-1140
    • /
    • 2013
  • Precipitation is one of the important factors in the hydrological cycle. It needs to understand accurate of spatial precipitation field because it has large spatio-temporal variability. Precipitation data obtained through the Tropical Rainfall Monitoring Mission (TRMM) 3B43 product is inaccurate because it has 25 km space scale. Downscaling of TRMM 3B43 product can increase the accuracy of spatial precipitation field from 25 km to 1 km scale. The relationship between precipitation and the normalized difference vegetation index(NDVI) (1 km space scale) which is obtained from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor loaded in Terra satellite is variable at different scales. Therefore regression equations were established and these equations apply to downscaling. Two renormalization strategies, Geographical Difference Analysis (GDA) and Geographical Ratio Analysis (GRA) are implemented for correcting the differences between remote sensing-derived and rain gauge data. As for considering the GDA method results, biases, the root mean-squared error (RMSE), MAE and Index of agreement (IOA) is equal to 4.26 mm, 172.16 mm, 141.95 mm, 0.64 in 2009 and 17.21 mm, 253.43 mm, 310.56 mm, 0.62 in 2011. In this study, we can see the 1km spatial precipitation field map over Korea. It will be possible to get more accurate spatial analysis of the precipitation field through using the additional rain gauges or radar data.

A simulation study for various propensity score weighting methods in clinical problematic situations (임상에서 발생할 수 있는 문제 상황에서의 성향 점수 가중치 방법에 대한 비교 모의실험 연구)

  • Siseong Jeong;Eun Jeong Min
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.5
    • /
    • pp.381-397
    • /
    • 2023
  • The most representative design used in clinical trials is randomization, which is used to accurately estimate the treatment effect. However, comparison between the treatment group and the control group in an observational study without randomization is biased due to various unadjusted differences, such as characteristics between patients. Propensity score weighting is a widely used method to address these problems and to minimize bias by adjusting those confounding and assess treatment effects. Inverse probability weighting, the most popular method, assigns weights that are proportional to the inverse of the conditional probability of receiving a specific treatment assignment, given observed covariates. However, this method is often suffered by extreme propensity scores, resulting in biased estimates and excessive variance. Several alternative methods including trimming, overlap weights, and matching weights have been proposed to mitigate these issues. In this paper, we conduct a simulation study to compare performance of various propensity score weighting methods under diverse situation, such as limited overlap, misspecified propensity score, and treatment contrary to prediction. From the simulation results overlap weights and matching weights consistently outperform inverse probability weighting and trimming in terms of bias, root mean squared error and coverage probability.

Effect of R-Z Relationships Derived from Disdrometer Data on Radar Rainfall Estimation during the Heavy Rain Event on 5 July 2005 (2005년 7월 5일 폭우 사례 시 우적계 R-Z 관계식이 레이더 강우 추정에 미치는 영향)

  • Lee, GyuWon;Kwon, Byung-Huk
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.596-607
    • /
    • 2012
  • The R-Z relationship is one of important error factors to determine the accuracy of radar rainfall estimation. In this study, we have explored the effect of the R-Z relationships derived from disdrometer data in estimating the radar rainfall. The heavy rain event that produced flooding in St-Remi, Quebec, Canada has been occurred. We have tried to investigate the severity of rain for this event using high temporal (2.5 min) and spatial resolution ($1^{\circ}$ by 250 m) radar data obtained from the McGill S-band radar. Radar data revealed that the heavy rain cells pass directly over St-Remi while the coarse raingauge network was not sufficient to detect this rain event. The maximum 30 min (1 h) accumulation reaches about 39 (42) mm in St-Remi. During the rain event, the two disdrometers (POSS; Precipitation Occurrence Sensor System) were available: One used for the reflectivity calibration by comparing disdrometer Z and radar Z and the other for deriving disdrometric R-Z relationships. The result shows the significant improvement with the disdrometric reflectivity-dependent R-Z relationships against the climatological R-Z relationship. The bias in radar rain estimation is reduced from +12% to -2% and the root-mean squared error from 16 to 10% for daily accumulation. Using the estimated radar rainfall rate with disdrometric R-Z relationships, the flood event was well captured with proper timing and amount.

Different penalty methods for assessing interval from first to successful insemination in Japanese Black heifers

  • Setiaji, Asep;Oikawa, Takuro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.9
    • /
    • pp.1349-1354
    • /
    • 2019
  • Objective: The objective of this study was to determine the best approach for handling missing records of first to successful insemination (FS) in Japanese Black heifers. Methods: Of a total of 2,367 records of heifers born between 2003 and 2015 used, 206 (8.7%) of open heifers were missing. Four penalty methods based on the number of inseminations were set as follows: C1, FS average according to the number of inseminations; C2, constant number of days, 359; C3, maximum number of FS days to each insemination; and C4, average of FS at the last insemination and FS of C2. C5 was generated by adding a constant number (21 d) to the highest number of FS days in each contemporary group. The bootstrap method was used to compare among the 5 methods in terms of bias, mean squared error (MSE) and coefficient of correlation between estimated breeding value (EBV) of non-censored data and censored data. Three percentages (5%, 10%, and 15%) were investigated using the random censoring scheme. The univariate animal model was used to conduct genetic analysis. Results: Heritability of FS in non-censored data was $0.012{\pm}0.016$, slightly lower than the average estimate from the five penalty methods. C1, C2, and C3 showed lower standard errors of estimated heritability but demonstrated inconsistent results for different percentages of missing records. C4 showed moderate standard errors but more stable ones for all percentages of the missing records, whereas C5 showed the highest standard errors compared with noncensored data. The MSE in C4 heritability was $0.633{\times}10^{-4}$, $0.879{\times}10^{-4}$, $0.876{\times}10^{-4}$ and $0.866{\times}10^{-4}$ for 5%, 8.7%, 10%, and 15%, respectively, of the missing records. Thus, C4 showed the lowest and the most stable MSE of heritability; the coefficient of correlation for EBV was 0.88; 0.93 and 0.90 for heifer, sire and dam, respectively. Conclusion: C4 demonstrated the highest positive correlation with the non-censored data set and was consistent within different percentages of the missing records. We concluded that C4 was the best penalty method for missing records due to the stable value of estimated parameters and the highest coefficient of correlation.

Assessment of Applicability of Portable HPGe Detector with In Situ Object Counting System based on Performance Evaluation of Thyroid Radiobioassays

  • Park, MinSeok;Kwon, Tae-Eun;Pak, Min Jung;Park, Se-Young;Ha, Wi-Ho;Jin, Young-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.2
    • /
    • pp.83-90
    • /
    • 2017
  • Background: Different cases exist in the measurement of thyroid radiobioassays owing to the individual characteristics of the subjects, especially the potential variation in the counting efficiency. An In situ Object Counting System (ISOCS) was developed to perform an efficiency calibration based on the Monte Carlo calculation, as an alternative to conventional calibration methods. The purpose of this study is to evaluate the applicability of ISOCS to thyroid radiobioassays by comparison with a conventional thyroid monitoring system. Materials and Methods: The efficiency calibration of a portable high-purity germanium (HPGe) detector was performed using ISOCS software. In contrast, the conventional efficiency calibration, which needed a radioactive material, was applied to a scintillator-based thyroid monitor. Four radioiodine samples that contained $^{125}I$ and $^{131}I$ in both aqueous solution and gel forms were measured to evaluate radioactivity in the thyroid. ANSI/HPS N13.30 performance criteria, which included the relative bias, relative precision, and root-mean-squared error, were applied to evaluate the performance of the measurement system. Results and Discussion: The portable HPGe detector could measure both radioiodines with ISOCS but the thyroid monitor could not measure $^{125}I$ because of the limited energy resolution of the NaI(Tl) scintillator. The $^{131}I$ results from both detectors agreed to within 5% with the certified results. Moreover, the $^{125}I$ results from the portable HPGe detector agreed to within 10% with the certified results. All measurement results complied with the ANSI/HPS N13.30 performance criteria. Conclusion: The results of the intercomparison program indicated the feasibility of applying ISOCS software to direct thyroid radiobioassays. The portable HPGe detector with ISOCS software can provide the convenience of efficiency calibration and higher energy resolution for identifying photopeaks, compared with a conventional thyroid monitor with a NaI(Tl) scintillator. The application of ISOCS software in a radiation emergency can improve the response in terms of internal contamination monitoring.