• Title/Summary/Keyword: bi-section

Search Result 122, Processing Time 0.029 seconds

Popping Mechanism and Shape Moulding Factor of Popcorn (튀김옥수수의 파열방향 및 튀김형태 결정요인)

  • Kim, Sun-Lim;Park, Seung-Ue;Kim, E-Hun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.1
    • /
    • pp.98-102
    • /
    • 1995
  • Popped popcorn generally have a regular popping direction and typical shape. But the reason and mechanism are not clear yet. This experiment was carried out to investigate the shape moulding factor of popped popcorn. Pericarp thickness of tip-cap section of kernels is slightly thicker than that of top section and this fact provides the important information to the reason. Popping starts when the moisture pressure of heated popcorn is increased and reaches at the critical pressure. Therefore, in the same moisture pressure conditions, top sections are bursted first because their pericarp section is thinner than that of tip-cap section. At the very moment tip-cap sections pull down the top sections of peri carp as bi-metal does. So kernels which removed tip-cap section showed the irregular popping shape because they lost the tip-cap pericarp function. How-ever, kernels which removed embryo showed the typical popping shape but their popping volume was small due to emition and shortage of critical moisture pressure. But kernels which removed the whole pericarp and top pericarp were not popped at all because moisture was entirely emitting out of kernels. These results suggest that the shape moulding factor of popped popcorn is the pericarp thickness differences between the top and tip-cap section of kernels.

  • PDF

Self-Assembling Adhesive Bonding by Using Fusible Alloy Paste for Microelectronics Packaging

  • Yasuda, Kiyokazu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.53-57
    • /
    • 2011
  • In the modern packaging technologies highly condensed metal interconnects are typically formed by highcost processes. These methods inevitably require the precise controls of mutually dependant process parameters, which usually cause the difficulty of the change in the layout design for interconnects of chip to-chip, or chip-to-substrate. In order to overcome these problems, the unique concept and methodology of self-assembly even in micro-meter scale were developed. In this report we focus on the factors which influenced the self-formed bumps by analyzing the phenomenon experimentally. In case of RMA flux, homogenous pattern was obtained in both plain surface and cross-section surface observation. By using RA flux, the phenomena were accelerated although the self-formtion results was inhomogenous. With ussage of moderate RA flux, reaction rate of the self-formation was accelerated with homogeneous pattern.

Evaluation on Interaction Surface of Plastic Resistance for Exposed-type Steel Column Bases under Biaxial Bending

  • Choi Jae-hyouk;Ohi Kenichi
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.826-835
    • /
    • 2005
  • Exposed-type steel column bases are used widely in low-rise building construction. Numerous researchers have examined methods to identify their stiffness and strength, but those studies have heretofore been restricted to in-plane behaviors. This paper presents an experimental investigation of inelastic behaviors of square hollow section (SHS) steel column bases under biaxial bending. Two types of failure modes are considered : anchor bolt yielding and base plate yielding. Different pinching effects and interaction surfaces for biaxial bending are observed for these two modes during bi-directional quasi-static cyclic loading tests. Differences are elucidated using limit analyses based on a simple analytical model.

Two-Phase Algorithm for Determining the Number and the Locations of RBF Centers (RBF 네트웍의 중심 개수와 위치의 통합 결정을 위한 Two-Phase 알고리즘)

  • 이대원;이재욱
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.827-834
    • /
    • 2003
  • 기존의 RBF네트웍의 중심 결정에 관한 연구에서는 은닉중의 노드 수(즉 중심의 개수)가 결정되었다는 가정하에 그 위치만을 결정하는 알고리즘들이 개발되었다. 그러나 RBF 네트웍 의 성능과 계산속도는 중심의 개수에도 민감하기 때문에, 중심 위치와 개수의 통합적인 고려가 필요하다. 본 논문에서는 RBF 네트웍의 중심결정에 있어서 그 위치 뿐만 아니라 개수까지 동시에 고려하는 Two-Phase 알고리즘을 제안한다. Two-Phase 알고리즘은 두 단계로 구성된다 찻 번째 단계에서는 Bi-section 방법과 보정된 k-medoid 군집화 기법을 이용하여 네트웍의 최소 중심 개수와 위치를 결정한다. 두번째 단계에서는 RBF 네트웍의 weight를 결정하고 네트웍 설계를 마친다. 제안된 알고리즘을 다양한 수지 예제에 적용한 결과, 중심결정에 관한 기존의 알고리즘에 비해 더 적은 수의 중심으로 더 정확한 예측성능을 보임을 알 수 있었다.

  • PDF

A Study on Hull Form Design Techniques Based on Graphical User Interface (그래픽 사용자 인터페이스(GUI)를 도입한 선형설계 기법에 관한 연구)

  • H. Shin;K.W. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.17-22
    • /
    • 1993
  • The intersection problem of three-dimensional free form surfaces can be solved by geometrical and numerical methods. Up to now, the subdivision technique, which is classified under the former, has been largely employed to find the cross section of ship hull form. In this paper, an algorithm is presented for intersecting ship hull form in high speed. The high speed calculation algorithm is based on simple numerical methods, such as the secant method, false position method and bisection method. The algorithm is directly applicable to depicting arbitrary ship cross sections, drawing ship lines and constructing the offset table.

  • PDF

Study of Multi-Step Current Lead (다단 전류도입선 해석)

  • Moon, J.S.;Seol, S.Y.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.379-384
    • /
    • 2000
  • High-Tc superconducting current leads with multi-step and continually varied cross-sectional area are studied to reduce heat leak into cryostat and material use. Assuming conduction-cooled lead the cross-sectional area is reduced along the heat flow direction according to the increase of critical current density which increases with decreasing temperature. In this study, we also analyze the multi-step cross-sectional area High-Tc current leads. The multi-st데 current leads changes the cross-sectional area to have constant safety-factor at changed section. The heat leak into cryostat, total voume, safety-factor and the temperature profiles are compared to those of the constant safety-factor current leads. The developed methods are applied to the Bi-2223 superconductor sheathed with Ag-Au alloy.

  • PDF

Design of 2T conduction cooled HTS magnet (2T급 전도냉각 고온 초전도 자석의 설계)

  • Sim, K.D.;Kim, S.H.;Sohn, M.H.;Min, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.817-818
    • /
    • 2006
  • A 2.0T class HTS conduction cooled magnet was designed. Designing of magnet shape was performed through two steps. First step is to find a basic cross section for minimize the amount of conductor used and second step to optimize the coil shape to satisfy the magnetic field homogeneity. The magnetic fields was analyzed with FEM and the critical current value of magnet was also expected with the result of field analysis and the Ic to B curve of Bi-2223 HTS tape.

  • PDF

Process Characteristics by Pattern Size in CMP Process of BLT Films (BLT박막의 화학적기계적연마 공정시 패턴 크기에 따른 공정 특성)

  • Shin, Sang-Hun;Lee, Woo-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.107-108
    • /
    • 2006
  • In this work, we first applied the chemical mechanical polishing (CMP) process to the planarization of ferroelectric film in order to obtain a good planarity of electrode/ferroelectric film interface. $Bi_{3.25}La_{0.75}Ti_{3}O_{12}$ (BLT) ferroelectric film was fabricated by the sol-gel method. However, there have been serious problems in CMP in terms of repeatability and defects in patterned wafer. Especially, dishing & erosion defects increase the resistance because they decrease the interconnect section area, and ultimately reduce the lifetime of the semiconductor. Cross-sections of the wafer before and after CMP were examined by Scanning electron microscope(SEM). Process characteristics of non-dishing and erosion were investigated.

  • PDF

Reliability Analysis of Reinforced Concrete Shear Wall Subjected to Biaxial Bending (이축 휨 모멘트를 받는 철근콘크리트 전단벽의 신뢰성 해석)

  • Park Jae Young;Shin Yeong-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.433-436
    • /
    • 2004
  • The safety of buildings is generally estimated by analyzing a plane frame ignoring a minor bending moment. In this paper, uncertainties of reinforced concrete shear wall subjected to a biaxial bending are considered. First, major parameters are selected from all parameters of general shear wall design to perform a reliability analysis in their practical ranges, means and standard derivations of selected design parameters for the reliability analysis are calculated by a data mining as a simulation method. The bi-section method is used to find inclined neutral axis and its limit state using MATLAB subjected to the concept on strength design method. The reliability index $\beta$ as a safety index is calculated based on AFOSM(Advanced First-Order Second Moment) method. Also, if target reliability index $\beta_T$ is decided by an engineer an amount of reinforcement can be calculated by subtracting the reliability index $\beta$ from the target reliability index $\beta_T$.

  • PDF

Investigation of the Finite Planar Frequency Selective Surface with Defect Patterns

  • Hong, Ic-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1360-1364
    • /
    • 2014
  • In this paper, RCS characteristics on defect pattern of crossed dipole slot FSS having a finite size have been analyzed. To analyze RCS, we applied the electric field integral equation analysis which applies BiCGSTab algorithm with iterative method and uses RWG basis function. To verify the validity of this paper, RCS of PEC sphere has been compared to the theoretical results and FSSs with defect patterns are fabricated and measured. As defect patterns in FSS, missing one column, missing some elements, and discontinuity in surfaces are simulated and compared with the measurement results. Resonant frequency shifts in pass band and changes in bandwidth are observed. From the results, precisely predicting and designing frequency characteristics over defect patterns are essential when applying FSS structures such as FSS radomes.