• Title/Summary/Keyword: bi-modal bounds

Search Result 2, Processing Time 0.02 seconds

Reliability Analysis of Multiple Failure Modes of Rubble-Mound Breakwaters (경사제의 다중 파괴모드에 대한 신뢰성 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.2
    • /
    • pp.137-147
    • /
    • 2008
  • A reliability analysis has been performed to investigate the systematic stability of multi-failure modes of rubble-mound breakwaters. The reliability functions of four different failure modes are established straightforwardly. AFDA(Approximate Full Distribution Approcah) reliability models for each failure modes are directly developed and satisfactorily calibrated through the comparison with CIAD's results. In the reliability analysis of single failure mode, the probabilities of failure are calculated and the influence coefficients of random variables in the failure modes are properly evaluated. Meanwhile, three different models such as uni-modal bounds, bimodal bounds, and PNET are applied to evaluate the probabilities of failure of multi-failure modes for rubble-mound breakwaters. It may be found that uni-modal bounds tend to overestimate the probability of failure of multi-failure modes. Therefore, for the systematic reliability analysis of multi-failure modes, it is recommended to use bi-modal bounds or PNET which consider the correlation between the failure modes for rubble-mound breakwaters. By introducing the reliability analysis of multi-failure modes, it could be possible to find out the additional probabilities of failure occurred by the multi-failure modes of a multi-component system such as rubble-mound breakwaters.

Reliability Analysis of Stability of Berm Breakwaters (소단형 방파제의 안정성에 대한 신뢰성 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.399-407
    • /
    • 2007
  • Two reliability models, AFDA(Approximate Full Distribution Approach) and Monte-Carlo simulation method, are directly developed to study on both hydraulic failure mode of berm recession and structural failure mode of armour breakage of berm breakwaters. By comparing the present results with the results of other researcher, it may be confirmed that two reliability models can be straightforwardly applicable to berm breakwaters. Relative influence of each random variable on hydraulic and structural failure probabilities could be properly analyzed. The upper bound and the lower bound of failure probability can be evaluated by using bi-modal bounds of the multiple failure mode analysis, from which it may be possible to investigate some kinds of dependence into between two failure modes. Finally, it may also be found that the structural failure mode of armour breakage could become a main failure mode of berm breakwaters in the condition of more than any allowable berm recession.