• Title/Summary/Keyword: bi-level programming model

Search Result 7, Processing Time 0.026 seconds

Optimization of Train Working Plan based on Multiobjective Bi-level Programming Model

  • Hai, Xiaowei;Zhao, Chanchan
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.487-498
    • /
    • 2018
  • The purpose of the high-speed railway construction is to better satisfy passenger travel demands. Accordingly, the design of the train working plan must also take a full account of the interests of passengers. Aiming at problems, such as the complex transport organization and different speed trains coexisting, combined with the existing research on the train working plan optimization model, the multiobjective bi-level programming model of the high-speed railway passenger train working plan was established. This model considers the interests of passengers as the center and also takes into account the interests of railway transport enterprises. Specifically, passenger travel cost and travel time minimizations are both considered as the objectives of upper-level programming, whereas railway enterprise profit maximization is regarded as the objective of the lower-level programming. The model solution algorithm based on genetic algorithm was proposed. Through an example analysis, the feasibility and rationality of the model and algorithm were proved.

A BI-Level Programming Model for Transportation Network Design (BI-Level Programming 기법을 이용한 교통 네트워크 평가방법 연구)

  • Kim, Byung-Jong;Kim, Won-Kyu
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.111-123
    • /
    • 2005
  • A network design model has been proposed. which represents a transportation facility investment decision problem. The model takes the discrete hi-level programming form in which two types of decision makers, government and travelers, are involved. The model is characterized by its ability to address the total social costs occurring in transportation networks and to estimate the equilibrium link volumes in multi-modal networks. Travel time and volume for each link in the multi-modal network are predicted by a joint modal split/traffic assignment model. An efficient solution algorithm has been developed and an illustrative example has been presented.

Optimal Placement of CRNs in Manned/Unmanned Aerial Vehicle Cooperative Engagement System

  • Zhong, Yun;Yao, Peiyang;Wan, Lujun;Xiong, Yeming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.52-68
    • /
    • 2019
  • Aiming at the optimal placement of communication relay nodes (OPCRN) problem in manned/unmanned aerial vehicle cooperative engagement system, this paper designed a kind of fully connected broadband backbone communication topology. Firstly, problem description of OPCRN was given. Secondly, based on problem analysis, the element attributes and decision variables were defined, and a bi-level programming model including physical layer and logical layer was established. Thirdly, a hierarchical artificial bee colony (HABC) algorithm was adopted to solve the model. Finally, multiple sets of simulation experiments were carried out to prove the effectiveness and superiority of the algorithm.

A Methodology of Path based User Equilibrium Assignment in the Signalized Urban Road Networks (도시부 도로 네트워크에서 교통신호제어와 결합된 경로기반 통행배정 모형 연구)

  • Han, Dong-Hee;Park, Jun-Hwan;Lee, Young-Ihn;Lim, Kang-Won
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.2
    • /
    • pp.89-100
    • /
    • 2008
  • In an urban network controlled by traffic signals, there is an interaction between the signal timing and the routes chosen by individual road users. This study develops a bi level programming model for traffic signal optimization in networks with path based traffic assignment. In the bi level programming model, genetic algorithm approach has been proposed to solve upper level problem for a signalized road network. Path based traffic assignment using column generation technique which is proposed by M.H. Xu, is applied at the lower-level. Genetic Algorithm provieds a feasible set of signal timings within specified lower and upper bounds signal timing variables and feeds into lower level problem. The performance of this model is investigated in numerical experiment in a sample network. In result, optimal signal settings and user equilibrium flows are made.

A Model and Algorithm for Optimizing the Location of Transit Transfer Centers (대중교통 환승센터 입지선정 모형 연구)

  • Yoo, Gyeong-Sang
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.1
    • /
    • pp.125-133
    • /
    • 2012
  • This paper deals with the passenger transfer trips counted from smart bus-card data from Seoul transit network to understand the current operational condition of the system. Objective of this study is to relocate the location of the transit transfer centers. It delivers a bi-level programing model. The upper model is a linear 0-1 binary integer program having the objective of total travel cost minimization constrained by the number of transfer centers and the total construction budget. The lower model is an user equilibrium assignment model determining the passengers' route choice according to the transfer center locations. The proposed bi-level programming model was tested in an example network. The result showed that the proposed was able to find the optimal solution.

Force-deformation relationship prediction of bridge piers through stacked LSTM network using fast and slow cyclic tests

  • Omid Yazdanpanah;Minwoo Chang;Minseok Park;Yunbyeong Chae
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.469-484
    • /
    • 2023
  • A deep recursive bidirectional Cuda Deep Neural Network Long Short Term Memory (Bi-CuDNNLSTM) layer is recruited in this paper to predict the entire force time histories, and the corresponding hysteresis and backbone curves of reinforced concrete (RC) bridge piers using experimental fast and slow cyclic tests. The proposed stacked Bi-CuDNNLSTM layers involve multiple uncertain input variables, including horizontal actuator displacements, vertical actuators axial loads, the effective height of the bridge pier, the moment of inertia, and mass. The functional application programming interface in the Keras Python library is utilized to develop a deep learning model considering all the above various input attributes. To have a robust and reliable prediction, the dataset for both the fast and slow cyclic tests is split into three mutually exclusive subsets of training, validation, and testing (unseen). The whole datasets include 17 RC bridge piers tested experimentally ten for fast and seven for slow cyclic tests. The results bring to light that the mean absolute error, as a loss function, is monotonically decreased to zero for both the training and validation datasets after 5000 epochs, and a high level of correlation is observed between the predicted and the experimentally measured values of the force time histories for all the datasets, more than 90%. It can be concluded that the maximum mean of the normalized error, obtained through Box-Whisker plot and Gaussian distribution of normalized error, associated with unseen data is about 10% and 3% for the fast and slow cyclic tests, respectively. In recapitulation, it brings to an end that the stacked Bi-CuDNNLSTM layer implemented in this study has a myriad of benefits in reducing the time and experimental costs for conducting new fast and slow cyclic tests in the future and results in a fast and accurate insight into hysteretic behavior of bridge piers.

An optimization framework for curvilinearly stiffened composite pressure vessels and pipes

  • Singh, Karanpreet;Zhao, Wei;Kapania, Rakesh K.
    • Advances in Computational Design
    • /
    • v.6 no.1
    • /
    • pp.15-30
    • /
    • 2021
  • With improvement in innovative manufacturing technologies, it became possible to fabricate any complex shaped structural design for practical applications. This allows for the fabrication of curvilinearly stiffened pressure vessels and pipes. Compared to straight stiffeners, curvilinear stiffeners have shown to have better structural performance and weight savings under certain loading conditions. In this paper, an optimization framework for designing curvilinearly stiffened composite pressure vessels and pipes is presented. NURBS are utilized to define curvilinear stiffeners over the surface of the pipe. An integrated tool using Python, Rhinoceros 3D, MSC.PATRAN and MSC.NASTRAN is implemented for performing the optimization. Rhinoceros 3D is used for creating the geometry, which later is exported to MSC.PATRAN for finite element model generation. Finally, MSC.NASTRAN is used for structural analysis. A Bi-Level Programming (BLP) optimization technique, consisting of Particle Swarm Optimization (PSO) and Gradient-Based Optimization (GBO), is used to find optimal locations of stiffeners, geometric dimensions for stiffener cross-sections and layer thickness for the composite skin. A cylindrical pipe stiffened by orthogonal and curvilinear stiffeners under torsional and bending load cases is studied. It is seen that curvilinear stiffeners can lead to a potential 10.8% weight saving in the structure as compared to the case of using straight stiffeners.