• 제목/요약/키워드: betavoltaic device

검색결과 3건 처리시간 0.014초

Evaluation of a betavoltaic energy converter supporting scalable modular structure

  • Kang, Taewook;Kim, Jinjoo;Park, Seongmo;Son, Kwangjae;Park, Kyunghwan;Lee, Jaejin;Kang, Sungweon;Choi, Byoung-Gun
    • ETRI Journal
    • /
    • 제41권2호
    • /
    • pp.254-261
    • /
    • 2019
  • Distinct from conventional energy-harvesting (EH) technologies, such as the use of photovoltaic, piezoelectric, and thermoelectric effects, betavoltaic energy conversion can consistently generate uniform electric power, independent of environmental variations, and provide a constant output of high DC voltage, even under conditions of ultra-low-power EH. It can also dramatically reduce the energy loss incurred in the processes of voltage boosting and regulation. This study realized betavoltaic cells comprised of p-i-n junctions based on silicon carbide, fabricated through a customized semiconductor recipe, and a Ni foil plated with a Ni-63 radioisotope. The betavoltaic energy converter (BEC) includes an array of 16 parallel-connected betavoltaic cells. Experimental results demonstrate that the series and parallel connections of two BECs result in an open-circuit voltage $V_{oc}$ of 3.06 V with a short-circuit current $I_{sc}$ of 48.5 nA, and a $V_{oc}$ of 1.50 V with an $I_{sc}$ of 92.6 nA, respectively. The capacitor charging efficiency in terms of the current generated from the two series-connected BECs was measured to be approximately 90.7%.

소형 전기도금장치를 이용한 베타전지용 Ni-63 밀봉선원 제작 (Manufacturing of Ni-63 Sealed Source for Betavoltaic Battery Using the Small-scale Electroplating Device)

  • 김진주;최상무;손광재;홍진태
    • 방사선산업학회지
    • /
    • 제11권3호
    • /
    • pp.173-179
    • /
    • 2017
  • The small-scale electroplating device was designed and fabricated for Ni-63 sealed source (foil type) with a high specific activity needed for production of betavoltaic battery. The condition of Ni electroplating was optimized by using fabricated electroplating device to establish a Ni-63 electroplating condition on the Ni foil. The results showed that the optimum surface morphology and thickness of Ni deposit was obtained for 1,758 seconds at a current density of $15mA{\cdot}cm^{-2}$ with 0.5% tween 20. Radioisotope Ni-63 electroplating was implemented under established condition. The radioactivity of Ni-63 sealed source was calculated to $28mCi{\cdot}cm^{-2}$, and the thickness of Ni-63 deposit was about $2.4{\mu}m$.

Design optimization of GaN diode with p-GaN multi-well structure for high-efficiency betavoltaic cell

  • Yoon, Young Jun;Lee, Jae Sang;Kang, In Man;Lee, Jung-Hee;Kim, Dong-Seok
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1284-1288
    • /
    • 2021
  • In this work, we propose and design a GaN-based diode with a p-doped GaN (p-GaN) multi-well structure for high efficiency betavoltaic (BV) cells. The short-circuit current density (JSC) and opencircuit voltage (VOC) of the devices were investigated with variations of parameters such as the doping concentration, height, width of the p-GaN well region, well-to-well gap, and number of well regions. The JSC of the device was significantly improved by a wider depletion area, which was obtained by applying the multi-well structure. The optimized device achieved a higher output power density by 8.6% than that of the conventional diode due to the enhancement of JSC. The proposed device structure showed a high potential for a high efficiency BV cell candidate.