• Title/Summary/Keyword: beta-Amino acids

Search Result 455, Processing Time 0.022 seconds

Physicochemical Characteristics for the Transformation of Blue Pigments from Genipin of Gardenia jasminoides with Amino Acids (치자 Genipin과 아미노산의 청색소변환반응에 관한 물리화학적 연구)

  • Lee, Jae-Youn;Hahn, Tae-Ryong;Paik, Young-Sook
    • Applied Biological Chemistry
    • /
    • v.41 no.5
    • /
    • pp.399-404
    • /
    • 1998
  • Genipin was obtained from hydrolysis of geniposide isolated from gardenia fruits with ${\beta}-glucosidase$. Reaction of genipin with glycine, alanine, histidine, lysine, phenylalanine and glutamate in aqueous buffer solution converted colorless starting materials to blue pigments. Effect of pH for the formation of blue pigments was tested using UV/Vis spectrophotometer. The optimum pH for the formation of blue pigments was 7.0. No pigment and trace amounts were formed at acidic (pH 3.0) and alkaline (pH 12.0) conditions, respectively. The amount and tincture of blue color were distinct with different amino acids. In contrast with lysine $({\lambda}_{max}=573\;nm)$, glycine $({\lambda}_{max}=595\;nm)$, phenylalanine $({\lambda}_{max}=602\;nm)$ and alanine $({\lambda}_{max}=595\;nm)$, the reaction of genipin with histidine $({\lambda}_{max}=601\;nm)$ and glutamate $({\lambda}_{max}=601\;nm)$ produced relatively small amounts of blue pigments. Rate constants for the formation of blue pigments from genipin with amino acids at various temperatures $(60,\;70,\;80,\;90^{\circ}C,\;pH\;7.0\;phosphate\;buffer)$ were obtained. Rate constants of genipin with basic amino acids were larger than neutral or acidic amino acids. Arrhenius activation energies of the formation of blue pigments indicated that activation energy of glycine $(E_A=9.8\;kcal/mol)$ was especially lower than those of other amino acids $(E_A=13.3{\sim}15.4\;kcal/mol)$.

  • PDF

Expression of \beta-agarase Gene and Carabolite Repression in Escherichia coli by the Promoter of Alginate Lyase Gene Isolated from Marine Pseudomonas sp. (해양의 Pseudomonas sp. 로부터 분리한 alginate lyase 유전자의 promoter에 의한 대장균 내에서의 \beta-agarase 유전자의 발현과 catabolite repression의 변화)

  • 공인수;박제현;한정현;최윤혁;이종희;진철호;이정기
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.2
    • /
    • pp.72-77
    • /
    • 2001
  • Expression of f3 ~agarase Gene and Catabolite Repression in Escherichia coli by the Promoter of Alginate Lyase Gene Isolated from Marine Pseudomonas sp. Jin, Cheal~Ho, J~Hyeon Park, Jeong-Hyun Han, YoonM Hyeok Chae, Jong~Hee Lee, Jung-Kee Lee!, and In-800 Kong*. Faculty of Food Science and Biotechnology, Pukyong National UniversitYt Pusan 608-737, Korea, llnBioNet Co. 1690-3 Taejon 306-230, Korea - Promoter is a key factor for expression of the recombinant protein. There are many promoters for overexpression of protein in various organisms. The aly promoter of Pseudomonas sp. W7 isolated from marine environment was known to be a constitutive expression promoter of the alginate lyase gene, and it's promoter activity is repressed by glucose in Escherichia coli. To investigate the catabolite repression of the aly promoter ~md association between the promoter mutants, f3 agarase gene, which was also cloned from Pseudomonas sp. W7 was connected to the aly promoter with the sequence the coding 46 N-terminal amino acids ofthe alginate lyase gene. The constructed plasmid was introduced into E. coli and the agarase activity was measured. Fourty six amino acids of the alginate lyase gene was serially deleted using peR to the direction of 5' upstream region and subcloned. The agarase was overexpressed by the aly promoter and the production of agarase was repressed by the addition of glucose into culture media. Fourty six amino acids of alginate lyase did not affect the production of agarase at all. The deletion of a putative stem-loop structure in the aly promoter induced the decrease of f3 -agarase productivity.

  • PDF

Principal Milk Components in Buffalo, Holstein Cross, Indigenous Cattle and Red Chittagong Cattle from Bangladesh

  • Islam, M.A.;Alam, M.K.;Islam, M.N.;Khan, M.A.S.;Ekeberg, D.;Rukke, E.O.;Vegarud, G.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.6
    • /
    • pp.886-897
    • /
    • 2014
  • The aim of the present study was to get a total physical and chemical characterization and comparison of the principal components in Bangladeshi buffalo (B), Holstein cross (HX), Indigenous cattle (IC) and Red Chittagong Cattle (RCC) milk. Protein and casein (CN) composition and type, casein micellar size (CMS), naturally occurring peptides, free amino acids, fat, milk fat globule size (MFGS), fatty acid composition, carbohydrates, total and individual minerals were analyzed. These components are related to technological and nutritional properties of milk. Consequently, they are important for the dairy industry and in the animal feeding and breeding strategies. Considerable variation in most of the principal components of milk were observed among the animals. The milk of RCC and IC contained higher protein, CN, ${\beta}$-CN, whey protein, lactose, total mineral and P. They were more or less similar in most of the all other components. The B milk was found higher in CN number, in the content of ${\alpha}_{s2}-$, ${\kappa}$-CN and ${\beta}$-lactalbumin, free amino acids, unsaturated fatty acids, Ca and Ca:P. The B milk was also lower in ${\beta}$-lactoglobulin content and had the largest CMS and MFGS. Proportion of CN to whey protein was lower in HX milk and this milk was found higher in ${\beta}$-lactoglobulin and naturally occuring peptides. Considering the results obtained including the ratio of ${\alpha}_{s1}-$, ${\alpha}_{s2}-$, ${\beta}$- and ${\kappa}$-CN, B and RCC milk showed best data both from nutritional and technological aspects.

Studies on Tasty Constituents in Various Foodstuffs -Part 1. Tasty Constituents of Chinese Quince- (각종(各種) 식품(食品)의 정미성분(呈味成分)에 관(關)한 연구(硏究) -제 1 보(第 1 報) 모과의 정미성분(呈味成分)-)

  • Kim, Young-Suk;Lee, Sung-Woo;Lee, Kap-Rang;Kim, Kwang-Soo;Cho, Soo-Yuel;Lee, Jung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.163-167
    • /
    • 1971
  • Tasty constituents of the Chinese quince such as polyphenols, amino acids, sugars and organic acids were surveyed through the course of this study. The results are as follows: 1. The major moiety of the polyphenol constituents were catechin, leucoanthocyan, and associated tannins. 2. Amino acids were mostly composed of aspartic acid, glutamic acid, arginine and ${\beta}-alanine$. 3. Citric and malic acids were the main organic acids. 4. Sugars detected were glucose, fructose, sucrose and xylose. 5. When compared with apple and/or pear: the total amount of amino acids were quite similar, sugars decreased from half to one third, but the total amount of polyphenol constituents increased from 20 up to 50 times and 3 to 5 times in organic acids. These indicates unambiguously that the origin of rough and acidic taste is due to these high level of polyphenols and organic acids.

  • PDF

Sequencing of cDNA Clones Expressed in Adipose Tissues of Korean Cattle

  • Bong, J.J.;Tong, K.;Cho, K.K.;Baik, M.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.4
    • /
    • pp.483-489
    • /
    • 2005
  • To understand the molecular mechanisms that regulate intramuscular fat deposition and its release, cDNA clones expressed in adipose tissues of Korean cattle were identified by differential screening from adipose tissue cDNA library. By partial nucleotide sequencing of 486 clones and a search for sequence similarity in NCBI nucleotide databases, 245 clones revealed unique clones. By a functional grouping of the clones, 14% of the clones were categorized to metabolism and enzyme-related group (stearoyl CoA desaturase, lactate dehydrogenase, fatty acid synthase, ATP citrate lyase, lipoprotein lipase, acetyl CoA synthetase, etc), and 6% to signal transduction/cell cycle-related group (C/EBP, cAMP-regulated phosphoprotein, calmodulin, cyclin G1, cyclin H, etc), and 4% to cytoskeleton and extracellular matrix components (vimentin, ankyrin 2, gelosin, syntenin, talin, prefoldin 5). The obtained 245 clones will be useful to study lipid metabolism and signal transduction pathway in adipose tissues and to study obesity in human. Some clones were subjected to full-sequencing containing open reading frame. The cDNA clone of bovine homolog of human prefoldin 5 gene had a total length of 959 nucleotides coding for 139 amino acids. Comparison of the deduced amino acid sequences of bovine prefoldin 5 with those of human and mouse showed over 95% identity. The cDNA clone of bovine homolog of human ubiquitin-like/S30 ribosomal fusion protein gene had a total length of 484 nucleotides coding for 133 amino acids. Comparison of the deduced amino acid sequences of bovine ubiquitin-like/S30 ribosomal fusion protein gene with those of human, rat and mouse showed over 97% identity. The cDNA clone of bovine homolog of human proteolipid protein 2 mRNA had a total length of 928 nucleotides coding for 152 amino acids. Comparison of the deduced amino acid sequences of bovine proteolipid protein 2 with those of human and mouse showed 87.5% similarity. The cDNA clone of bovine homolog of rat thymosin beta 4 had a total length of 602 nucleotides coding for 44 amino acids. Comparison of the deduced amino acid sequences of bovine thymosin beta 4 gene with those of human, mouse and rat showed 93.1% similarity. The cDNA clone of bovine homolog of human myotrophin mRNA had a total length of 790 nucleotides coding for 118 amino acids. Comparison of the deduced amino acid sequences of bovine myotrophin gene with those of human, mouse and rat showed 83.9% similarity. The functional role of these clones in adipose tissues needs to be established.

Molecular Cloning and Characterization of Neuronal $\beta$-subunit of Large-Conductance$Ca^{2+}$-activated $K^+$ Channels from Rat Brain

  • Heo, Moon-Sun;Ha, Tal-Soo;Park, Chul-Seung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.38-38
    • /
    • 2001
  • We cloned the cDNA encoding the neuron-specific $\beta$-subunit ($\beta$4) of large-conductance calcium-activated potassium channels from rat brain and determined the DNA sequences of the entire coding region (GenBank accession; AY028605). The deduced amino acid sequences of r$\beta$4, 210 amino acids in length, are closely related to the $BK_{Ca}$ $\beta$4 subunits of other species but show only limited sequence homology to other $\beta$-subunits, $\beta$1-$\beta$3.(omitted)d)

  • PDF

Synthesis of a Sulfonic Acid Analogues of Peptides (Tauryl-L-Histidine) (Tauryl-L-Histidine 의 合成)

  • Park, Won-Kil
    • Journal of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.38-41
    • /
    • 1961
  • By varying groups on biologically active molecules, it is possible to produce analogues which sometimes inhibit the action of the parent compound. Such is true of taurine(${\beta}$-amino-ethane sulfonic acid)as an analogue of ${\beta}$-alanine and of pantoyl taurine for pantothenic acid. It seemed possible that the sulfonic acid analogues of amino acids built into peptides might possibly produce inhibition of the parent peptide. Tauryl-L-histidine was selected to prepare as an analogue of carnosine(${\beta}$-alanyl-L-histidine). There were several reasons for this choice. Camosine causes a slight contraction of isolated uterine muscle and inhibition of this action can be easily tested. Also, taurine, being a ${\beta}$-amino sulfonic acid, is much more stable than the ${\beta}$-amino sulfonic acids. Phthalyl tauryl-L-histidine methyl ester was prepared by condensing phthalyl tauryl chloride with histidine methyl ester in chloroform. The yields were quite low possibly due to reaction between the acid chloride and the imidazole of histidine. Approximately 50 per cent yield of crude amorphous product was obtained, but upon purification by crystallization they yielded only 25 percent of a pure product. The methyl ester was removed by acid hydrolysis to prevent partial cleavage of the phthalyl group. Crystalline tauryl histidine was then obtained from this acid by removal of the phthalyl group by hydrazinolysis. Tests for inhibition were carried out by comparing the action of camosine on isolated uterine muscle before and after tauryl histidine had been added to the bath surrounding the muscle strip. Only in very high relative concentrations of tauryl histidine was there any demonstrable inhibition.

  • PDF

Mechanism and Regulation of Amino Acid Transport in Mammary Gland - Review -

  • Kansal, Vinod K.;Sharma, Rekha
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.5
    • /
    • pp.710-719
    • /
    • 2001
  • Several amino acid transport systems in mammary gland have been characterized during the last few years. These systems may be divided into two broad categories based on whether they are sodium-dependent or $Na^{+}$-independent, and each of these categories is subdivided into 3 groups depending on whether the systems prefer zwitterionic, cationic or anionic substrates. The zwitterion preferring transport processes in mammary gland are $Na^{+}$-dependent system A and $Na^{+}$-independent systems L and T. System $y^{+}$ is a $Na^{+}$-independent transporter of cationic amino acids and $X_{AG^{-}}$ is a $Na^{+}$-dependent system for anionic amino acids. A ($Na^{+}+Cl^{-}$)-dependent system, selective for $\beta$-amino acids has been reported in rat mammary tissue. In addition, there is yet another class of transporters that have still broader specificity. The $Na^{+}$-dependent systems $BCl^{-}$-dependent and $BCl^{-}$-independent and $Na^{+}$-independent system $y^{+}L$ have been reported to mediate the transport of zwitterionic as well as cationic amino acids. Each system has been characterized with respect to its substrate specificity, affinity, kinetics and ion-dependence. Transport of amino acids by mammary tissue is regulated by i) the intracellular substrate concentration, ii) lactogenic hormones and iii) milk stasis. Four of the above transport systems (i.e. A, L, $y^{+}$ and $BCl^{-}$-independent) are up-regulated by lactogenic hormones (insulin, cortisol and prolactin) in mammary gland.

Age-Related Changes in Sulfur Amino Acid Metabolism in Male C57BL/6 Mice

  • Jeon, Jang Su;Oh, Jeong-Ja;Kwak, Hui Chan;Yun, Hwi-yeol;Kim, Hyoung Chin;Kim, Young-Mi;Oh, Soo Jin;Kim, Sang Kyum
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.167-174
    • /
    • 2018
  • Alterations in sulfur amino acid metabolism are associated with an increased risk of a number of common late-life diseases, which raises the possibility that metabolism of sulfur amino acids may change with age. The present study was conducted to understand the age-related changes in hepatic metabolism of sulfur amino acids in 2-, 6-, 18- and 30-month-old male C57BL/6 mice. For this purpose, metabolite profiling of sulfur amino acids from methionine to taurine or glutathione (GSH) was performed. The levels of sulfur amino acids and their metabolites were not significantly different among 2-, 6- and 18-month-old mice, except for plasma GSH and hepatic homocysteine. Plasma total GSH and hepatic total homocysteine levels were significantly higher in 2-month-old mice than those in the other age groups. In contrast, 30-month-old mice exhibited increased hepatic methionine and cysteine, compared with all other groups, but decreased hepatic S-adenosylmethionine (SAM), S-adenosylhomocysteine and homocysteine, relative to 2-month-old mice. No differences in hepatic reduced GSH, GSH disulfide, or taurine were observed. The hepatic changes in homocysteine and cysteine may be attributed to upregulation of cystathionine ${\beta}-synthase$ and down-regulation of ${\gamma}-glutamylcysteine$ ligase in the aged mice. The elevation of hepatic cysteine levels may be involved in the maintenance of hepatic GSH levels. The opposite changes of methionine and SAM suggest that the regulatory role of SAM in hepatic sulfur amino acid metabolism may be impaired in 30-month-old mice.

Isolation of cDNAs for Gonadotropin-II of Flounder (Paralichthys olivaceus) and Its Expressions in Adult Tissues

  • Lee, Jae-Hyung;Nam, Soo-Wan;Kim, Young-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.710-716
    • /
    • 2003
  • Gonadotropin (GTH) is a pituitary glycoprotein hormone that regulates gonadal development in vertebrates. In teleosts, two types of gonadotropins, GTH-I and GTH-II, are produced in the pituitary, and they comprised of common ${\alpha}$ and distinct ${\beta}$ subunits. In the present study, the cDNAs encoding GTH ${\alpha}\;and\;GTH-II{\beta}$ subunits were cloned and sequenced from flounder (Paralichthys olivaceus) pituitary cDNA library. The nucleotide sequence of the a subunit was 619 bp long, encoding 124 amino acids, and that of the $GTH-II{\beta}$ subunit was 538 bp long, encoding 145 amino acids. GTH subunits had well conserved cysteines, when aligned with other members of the glycoprotein family. The ${\beta}$ subunit of gonadotropin II ($GTH-II{\beta}$) had a different N-linked glycosylation site. RT-PCR analysis showed an increase of GTH II mRNA levels in association with gonadal development, and also showed that the mRNA expression of the ${\alpha}$ subunit was detected only in tissues from pituitary glands.