• Title/Summary/Keyword: beta-1,3/1,6-glucan

Search Result 191, Processing Time 0.032 seconds

Linkage Structure Analysis of Barley and Oat $\beta$-Glucans by High Performance Anion Exchange Chromatography

  • Ryu, Je-Hoon;Yoo, Dong-Hyung;Lee, Byung-Hoo;Lee, Su-Yong;Joo, Mi-Hyun;Yoo, Sang-Ho
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.271-274
    • /
    • 2009
  • Cereal $\beta$-glucans, linked essentially by mixed $\beta$-(1,4/1,3) glycosidic bonds, were extracted, purified, and structurally identified. Previously chemical structure of barley $\beta$-glucans was characterized from 3 varieties of 'Gang', 'Ohl', and 'Gwangan', and the (1,4)/(1,3) linkage ratio of the $\beta$-glucans was identical. In this study, $\beta$-glucans from 1 barley ('Chal') and 3 oat ('Ohl', 'Samhan', and 'Donghan') varieties were structurally scrutinized, and the linkage pattern of total 7 cereal $\beta$-glucans was compared. The amount of 2 major 3-O-$\beta$-cellobiosyl-D-glucose (DP3) and 3-O-$\beta$-cellotriosyl-D-glucose (DP4) from barley and oat accounted for only 66.6-73.3 and 68.12-81.89% of water-extractable $\beta$-glucan fractions, and the (1,4)/(1,3) linkage ratios of both barley and oat $\beta$-glucans were within very narrow range of 2.27-2.31 and 2.38-2.39, respectively, among the cultivars tested. Structural difference in the cereal $\beta$-glucans was evident when DP3:DP4 ratio in the $\beta$-glucan structure was compared. As a result, this ratio was significantly greater for barley $\beta$-glucan (2.26-2.74) than for oat (1.54-1.66). Chal-B had the greatest DP3 to DP4 ratio among the samples, which in turn reflected the least amount of (1,4)-linkages.

Effect of $\beta$-glucan Extracted from Youngji Mushroom on the Growth Performance of Weaning Pigs (영지버섯에서 추출한 $\beta$-glucan 이 자돈의 생산능력에 미치는 영향)

  • Kim, Jong-Duk;Shim, Keum-Seob;Choi, Nag-Jin;Kim, Ji-Hoon;Kim, Yong-Hyun;Kwon, Hyun-Jung;Kim, Sun-Ki;Han, Man-Deuk
    • Korean Journal of Organic Agriculture
    • /
    • v.18 no.3
    • /
    • pp.401-418
    • /
    • 2010
  • This experiment was selected a $\beta$-glucan producing mushroom strain and developed industrial media, and used to $\beta$-glucan as an alternative for antibiotics in weaned pigs. Yields of mycelial biomass and extracellular $\beta$-glucan from Youngji (Ganoderma lucidum) mushroom was 8.52g/L and 4.49g/L respectively. Also, we prepared optimum formula for mushroom cultivations. A total of 144 pigs ($8.6{\pm}0.9$ kg average body weight, weaned $20{\pm}3$ days of age) were allotted to 4 different treatment groups and replicated 4 times with 8 pigs per replicate in randomized complete block design. Treatments were T1) NC (negative control, basal diet), T2) PC (positive control, basal diet+0.255% antibiotics), T3) NC+0.2% $\beta$-glucan and T4) PC+0.2% $\beta$-glucan. The T2 and T4 treatments were significantly higher in feed efficiency by antibiotics group (p<0.05), however, there was no significant differences in terms of average daily gain (ADG) and average daily feed intake (ADFI) during phase I (0~14 days). In phase II (15~28 days), Pigs fed with antibiotics and $\beta$-glucan (T4) had greater ADG than other treatments (p<0.05), while no differences were observed in ADFI and feed efficiency. During the whole experiment period, the ADG of T4 treatment was higher than other treatments. Pigs fed with $\beta$-glucan (T3 and T4) had greater diarrhea score and moisture content than other treatments (p<0.05). Pigs fed with $\beta$-glucan (T3 and T4) had greater moisture content than other treatments (p<0.05). However, there was no significant differences in diarrhea score and mortality of weaned pigs. There was marginal reductions in feed cost measured feed cost per weight gain used in antibiotics and $\beta$-glucan added diet during phase I. In the second phase, the treatment supplemented with antibiotics had a significantly lower feed cost per weight gain compared to the other treatments. The results from these experiments suggests that $\beta$-glucan is likely able to improve the growth performance, and reduce feed cost although they do not have similar effects like antibiotics in weaning pigs.

Immunomodulatory effects of β-1,3/1,6-glucan and lactic acid bacteria in LP-BM5 murine leukemia viruses-induced murine acquired immune deficiency syndrome (면역결핍 모델에서 β-1,3/1,6-glucan과 유산균을 이용한 in vivo 면역 활성 조절 효과)

  • Kim, Min-Soo;Kim, JoongSu;Ryu, Min Jung;Kim, Ki hong;Hwang, Kwontack
    • Food Science and Preservation
    • /
    • v.24 no.8
    • /
    • pp.1158-1167
    • /
    • 2017
  • In this study, ${\beta}$-1,3/1,6-glucan, lactic acid bacteria, and ${\beta}$-1,3/1,6-glucan+lactic acid bacteria were tested for 10 weeks using an immunodeficient animal model infected with LP-BM5 murine AIDS virus On the immune activity. Cytokines production, plasma immunoglobulin concentration, T cell and B cell proliferation were measured. As a result, the T cell proliferative capacity which was weakened by immunization with LP-BM5 murine AIDS virus increased significantly T cell proliferative capacity compared with the red ginseng control group. B cell proliferative capacity was significantly higher than the infected control group. Increased B cell proliferation was reduced. In the cytokine production, IL-2, IL-12 and IL-15 in the Th1-type cytokine increased the secretion of IL-2, IL-12 and IL-15 compared to the infected control. The proliferative capacity of the treated group was higher than that of the mixed treatment group. TNF-${\alpha}$ was significantly decreased compared with the infected control group. The IL-4, IL-6 and IL-10 levels were significantly inhibited in the infected control group and the Th1/Th2 type cytokine expression was regulated by immunohistochemistry. IgE, IgA, and IgG levels were significantly lower in the immunoglobulin secretion assay than in the control. As a result, the immunomodulatory effect of ${\beta}$-1,3/1,6-glucan+lactic acid bacteria was confirmed by mixing with LP-BM5 murine AIDS virus-infected immunodeficient animal model.

In Vitro Antioxidant Activity Profiles of ${\beta}$-Glucans Isolated from Yeast Saccharomyces cerevisiae and Mutant Saccharomyces cerevisiae IS2

  • Song, Hee-Sun;Moon, Ki-Young
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.437-440
    • /
    • 2006
  • To explore the possible usefulness of ${\beta}$-glucans as natural antioxidants, the antioxidant profiles of ${\beta}$-glucan, extracted from Saccharomyces cerevisiae KCTC 7911, and water soluble and insoluble mutant ${\beta}$-glucan, isolated from yeast mutant S. cerevisiae IS2, were examined by five different in vitro evaluation methods: lipid peroxidation value (POV), nitric oxide (NO), 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, reducing power, and ${\beta}$-carotene diffusion assay. The antioxidant activities of all ${\beta}$-glucans evaluated in POV test were comparable to or better than that of the known antioxidant, vitamin C. Remarkably, the ${\beta}$-glucan and water insoluble mutant ${\beta}$-glucan possessed 2.5-fold more potent activity than vitamin C at a dosage of 2 mg. Although vitamin C showed 100-fold greater activity than all ${\beta}$-glucans in NO and DPPH tests for measuring the radical scavenging capacity, all ${\beta}$-glucans revealed higher radical scavenging activity than the known radical scavenger, N-acetyl-L-cysteine (NAC), in DPPH test. The water insoluble mutant ${\beta}$-glucan had 2.6- and 5-fold greater antioxidative activity than water soluble ${\beta}$-glucan in NO and DPPH tests, respectively, showing that all ${\beta}$-glucans were able to scavenge radicals such as NO or DPPH. While all ${\beta}$-glucans revealed lower antioxidant profiles than vitamin C in both reducing power activity and ${\beta}$-carotene agar diffusion assay, the ${\beta}$-glucan and water insoluble mutant ${\beta}$-glucan did show a marginal reducing power activity as well as a considerable ${\beta}$-carotene agar diffusion activity. These results confirmed the potential usefulness of these ${\beta}$-glucans as natural antioxidants.

Quality Characteristics of Sponge Cake Added with ${\beta}-Glucan$ during Storage (${\beta}-Glucan$ 첨가 스폰지 케이크의 저장 중 품질 특성)

  • Jo, Gyung-Mi;Shin, Yu-Mi;Yu, Jeong-Sun;Kwon, Oh-Yun;Kim, Mi-Kyoung;Cho, Han-Young;Kim, Mee-Ree
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.17 no.1
    • /
    • pp.110-117
    • /
    • 2007
  • The quality characteristics of sponge cake with added ${\beta}-glucan$(2, 4 and 6%) were evaluated. Rapid decreases in moisture content in the sponge cake were observed during storage($20^{\circ}C$, 70% relative humidity) in control and 2% ${\beta}-glucan$ cakes by day 3 of storage, while the moisture content in the 4% and 6% ${\beta}-glucan-added$ sponge cake slowly decreased until day 12 of storage. During storage, hardness was much lower in groups with added ${\beta}-glucan$ than in control. On day 1 L, a and b values of both crust and crumb of sponge cake with added ${\beta}-glucan$ were not significantly different from control, although the a and b values decreased significantly with storage days. Sensory test revealed that the scores for over-all acceptability were much higher in sponge cake with added ${\beta}-glucan$, and the same results were obtained on day 5. Based on these results, ${\beta}-glucan$ addition maintained moisture content and had an overall good effect on sponge cake.

  • PDF

Immunomodulation of Fungal β-Glucan in Host Defense Signaling by Dectin-1

  • Batbayar, Sainkhuu;Lee, Dong-Hee;Kim, Ha-Won
    • Biomolecules & Therapeutics
    • /
    • v.20 no.5
    • /
    • pp.433-445
    • /
    • 2012
  • During the course of evolution, animals encountered the harmful effects of fungi, which are strong pathogens. Therefore, they have developed powerful mechanisms to protect themselves against these fungal invaders. ${\beta}$-Glucans are glucose polymers of a linear ${\beta}$(1,3)-glucan backbone with ${\beta}$(1,6)-linked side chains. The immunostimulatory and antitumor activities of ${\beta}$-glucans have been reported; however, their mechanisms have only begun to be elucidated. Fungal and particulate ${\beta}$-glucans, despite their large size, can be taken up by the M cells of Peyer's patches, and interact with macrophages or dendritic cells (DCs) and activate systemic immune responses to overcome the fungal infection. The sampled ${\beta}$-glucans function as pathogen-associated molecular patterns (PAMPs) and are recognized by pattern recognition receptors (PRRs) on innate immune cells. Dectin-1 receptor systems have been incorporated as the PRRs of ${\beta}$-glucans in the innate immune cells of higher animal systems, which function on the front line against fungal infection, and have been exploited in cancer treatments to enhance systemic immune function. Dectin-1 on macrophages and DCs performs dual functions: internalization of ${\beta}$-glucan-containing particles and transmittance of its signals into the nucleus. This review will depict in detail how the physicochemical nature of ${\beta}$-glucan contributes to its immunostimulating effect in hosts and the potential uses of ${\beta}$-glucan by elucidating the dectin-1 signal transduction pathway. The elucidation of ${\beta}$-glucan and its signaling pathway will undoubtedly open a new research area on its potential therapeutic applications, including as immunostimulants for antifungal and anti-cancer regimens.

Analysis of Immunomodulating Gene Expression by cDNA Microarray in $\beta$-Glucan-treated Murine Macrophage

  • Sung, Su-Kyong;Kim, Ha-Won
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.98-98
    • /
    • 2003
  • ${\beta}$-(1,3)-D-Glucans have been known to exhibit antitumor and antimicrobial activities. The presence of dectin-1,${\alpha}$, ${\beta}$-glucan receptor of dendritic cell, on macrophage has been controvertial. RT-PCR analysis led to the detection of dectin-1${\alpha}$ and ${\beta}$ in murine macrophage Raw264.7 cell line. Among the various organs of mouse, dectin-1${\alpha}$ and ${\beta}$ were detected in the thymus, lung, spleen, stomach and intestine. To analyze gene expression modulated by ${\beta}$-glucan treated murine Raw264.7 macrophage, total mRNA was applied to cDNA microarray to interrogate the expression of 7,000 known genes. cDNA chip analysis showed that ${\beta}$-glucan of P. osteatus increased gene expressions of immunomodulating genes, membrane antigenic proteins, chemokine ligands, complements, cytokines, various kinases, lectin associated genes and oncogenes in Raw 264.7 cell line. When treated with ${\beta}$-glucan of P. osteatus and LPS, induction of gene expression of TNF-${\alpha}$ and IFN-R1 was confirmed by RT-PCR analysis. Induction of TNF-R type II expression was confirmed by FACS analysis. IL-6 expression was abolished by EDTA in ${\beta}$-glucan and LPS treated Raw264.7 cell line, indicating that ${\beta}$-glucan binds to dectin-l in a Ca$\^$++/ -dependent manner. To increase antitumor efficacy of ${\beta}$-glucan, ginsenoside Rh2 (GRh2) was co-treated with ${\beta}$-glucan in vivo and in vitro tests. IC$\sub$50/ values of GRh2 were 20 and 25 $\mu\textrm{g}$/$m\ell$ in SNU-1 and B16 melanoma F10 cell line, respectively. Co-treatment with ${\beta}$-glucan and GRh2 showed synergistic antitumor activity with cisplatin and mitomycin C both in vitro and in vivo. Single or co-treatment with ${\beta}$-glucan and GRh2 increased tumor bearing mouse life span. Co-treatment with ${\beta}$-glucan and GRh2 showed more increased life span with mitomycin C than that with cisplatin. Antitumor activities were 67% and 72 % by co-injection with ${\beta}$-glucan and GRh2 in the absence or presence of mitomycin C, respectively.

  • PDF

Production of Extracellular Water Insoluble ${\beta}-1,3-Glucan$ (Curdlan) from Bacillus sp. SNC07

  • Gummadi, Sathyanarayana N.;Kumar, Kislay
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.546-551
    • /
    • 2005
  • [ ${\beta}-1,3-Glucan$ ] (curdlan) is a water-insoluble polysaccharide composed exclusively of ${\beta}-1,3\;linked$ glucose residues. Extracellular curdlan was mostly synthesized by Agrobacterium species and Alcaligenes faecalis under nitrogen-limiting conditions. In this study, we screened the microorganisms capable of producing extracellular curdlan from soil samples. For the first time, we reported Gram-positive bacterium Bacillus sp. SNC 107 capable of producing extracellular curdlan in appreciable amounts. The effect of different carbon sources on curdlan production was studied and found that the yield of curdlan was more when glucose was used as carbon source. It was also found that maximum production was achieved when the initial concentration of ammonium and phosphate in the medium was 0.5 and 1.9 g/L respectively. In this study the curdlan production was increased from 3 to 7g/L in shake flask cultures.

Development of Isolation Process of Barley Starch Using $\beta$-glucanase ($\beta$-Glucanase를 이용한 보리전분 분리공정의 개발)

  • 서호찬
    • Korean journal of food and cookery science
    • /
    • v.15 no.3
    • /
    • pp.238-243
    • /
    • 1999
  • For the development of technique for isolation of naked barley starch from Youngsan variety, optimum conditions of the isolation process were investigated. The effect of blending was examined and the results showed that 29.7% starch yield was obtained by 6 times of blending. After the blending, the barley starch contained 3.2% protein, 0.7% fat, 0.4% fiber, 0.4% ash and 2.8% ${eta}$-glucan. The opitmum conditions of ${eta}$-glucanase treatment were studied and the results showed that the amount of ${eta}$-glucanase and barley flour-water ratio were 60,000 unit and 1/2, the optimum steeping temperature, pH were $45^{\circ}C$ and 6.5, respectively. The effect of alkali treatment which would be supposed to increase the yield and purity of the barley starch was also examined. 76.7% starch content was obtained by 2 hr of alkali treatment. After all the treatment of isolation process, the barley starch finally contained 0.2% protein and 0.1% ${eta}$-glucan.

  • PDF

Immune-Enhancing Alkali-Soluble Glucans Produced by Wild-Type and Mutant Saccharomyces cerevisiae

  • Ha Chang-Hoon;Lim Ki-Hong;Jang Se-Hwan;Yun Cheol-Won;Paik Hyun-Dong;Kim Seung-Wook;Kang Chang-Won;Chang Hyo-Ihl
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.576-583
    • /
    • 2006
  • The alkali-soluble glucan of the yeast cell wall contains $\beta-(1,3)-$ and (1,6)-D-linkages and is known to systemically enhance the immune system. In the previous study [6], in order to isolate cell wall mutants, a wild-type strain was mutagenized by exposure to ultraviolet light, and the mutants were then selected via treatment with laminarinase $(endo-\beta-(1,3)-D-glucanase)$. The mass of alkali- and water-soluble glucans produced by the mutant was measured to be 33.8 mg/g of the dry mass of the yeast cell. Our results showed that the mutants generated the amount of alkali-soluble glucan 10-fold higher than that generated by the wild-type. Structural analysis showed that the alkali-soluble glucan from the mutants was associated with a higher degree of $\beta-(1,6)-D-linkage$ than was observed in conjunction with the wild-type. Yeast cell wall $\beta-glucan$ was shown to interact with macrophages via receptors, thereby inducing the release of tumor necrosis factor alpha $(TNF-\alpha)$ and nitric oxide. Alkali-soluble $\beta-glucans$, both from water-soluble and water-insoluble glucan, exhibited a higher degree of macrophage activity with regard to both the secretion of tumor necrosis factor alpha $(TNF-\alpha)$ and nitric oxide and direct phagocytosis, than did the positive control ($1{\mu}g$ of lipopolysaccharide).