• Title/Summary/Keyword: best-fit algorithm

Search Result 60, Processing Time 0.025 seconds

체외충격파를 이용한 결석의 치료

  • 김건상
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.114-116
    • /
    • 1989
  • A method has been proposed for the fully automatic detection of left ventricular endocardial boundary in 2D short axis echocardiogram using geometric model. The procedure has the following three distinct stages. First, the initial center is estimated by the initial center estimation algorithm which is applied to decimated image. Second, the center estimation algorithm is applied to original image and then best-fit elliptic model estimation is processed. Third, best-fit boundary is detected by the cost function which is based on the best-fit elliptic model. The proposed method shows effective result without manual intervention by a human operator.

  • PDF

Slime mold and four other nature-inspired optimization algorithms in analyzing the concrete compressive strength

  • Yinghao Zhao;Hossein Moayedi;Loke Kok Foong;Quynh T. Thi
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.65-91
    • /
    • 2024
  • The use of five optimization techniques for the prediction of a strength-based concrete mixture's best-fit model is examined in this work. Five optimization techniques are utilized for this purpose: Slime Mold Algorithm (SMA), Black Hole Algorithm (BHA), Multi-Verse Optimizer (MVO), Vortex Search (VS), and Whale Optimization Algorithm (WOA). MATLAB employs a hybrid learning strategy to train an artificial neural network that combines least square estimation with backpropagation. Thus, 72 samples are utilized as training datasets and 31 as testing datasets, totaling 103. The multi-layer perceptron (MLP) is used to analyze all data, and results are verified by comparison. For training datasets in the best-fit models of SMA-MLP, BHA-MLP, MVO-MLP, VS-MLP, and WOA-MLP, the statistical indices of coefficient of determination (R2) in training phase are 0.9603, 0.9679, 0.9827, 0.9841 and 0.9770, and in testing phase are 0.9567, 0.9552, 0.9594, 0.9888 and 0.9695 respectively. In addition, the best-fit structures for training for SMA, BHA, MVO, VS, and WOA (all combined with multilayer perceptron, MLP) are achieved when the term population size was modified to 450, 500, 250, 150, and 500, respectively. Among all the suggested options, VS could offer a stronger prediction network for training MLP.

IMAGE FUSION ACCURACY FOR THE INTEGRATION OF DIGITAL DENTAL MODEL AND 3D CT IMAGES BY THE POINT-BASED SURFACE BEST FIT ALGORITHM (Point-based surface best fit 알고리즘을 이용한 디지털 치아 모형과 3차원 CT 영상의 중첩 정확도)

  • Kim, Bong-Chul;Lee, Chae-Eun;Park, Won-Se;Kang, Jeong-Wan;Yi, Choong-Kook;Lee, Sang-Hwy
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.5
    • /
    • pp.555-561
    • /
    • 2008
  • Purpose: The goal of this study was to develop a technique for creating a computerized composite maxillofacial-dental model, based on point-based surface best fit algorithm and to test its accuracy. The computerized composite maxillofacial-dental model was made by the three dimensional combination of a 3-dimensional (3D) computed tomography (CT) bone model with digital dental model. Materials and Methods: This integration procedure mainly consists of following steps : 1) a reconstruction of a virtual skull and digital dental model from CT and laser scanned dental model ; 2) an incorporation of dental model into virtual maxillofacial-dental model by point-based surface best fit algorithm; 3) an assessment of the accuracy of incorporation. To test this system, CTs and dental models from 3 volunteers with cranio-maxillofacial deformities were obtained. And the registration accuracy was determined by the root mean squared distance between the corresponding reference points in a set of 2 images. Results and Conclusions: Fusion error for the maxillofacial 3D CT model with the digital dental model ranged between 0.1 and 0.3 mm with mean of 0.2 mm. The range of errors were similar to those reported elsewhere with the fiducial markers. So this study confirmed the feasibility and accuracy of combining digital dental model and 3D CT maxillofacial model. And this technique seemed to be easier for us that its clinical applicability can good in the field of digital cranio-maxillofacial surgery.

Automatic Endocardial Boundary Detection on 2D Short Axis Echocardiography for Left Ventricle using Geometric Model (좌심실에 대한 2D 단축 심초음파도에서 기하학적인 모델을 이용한 심내벽 윤곽선의 자동 검출)

  • 김명남;조진호
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.447-454
    • /
    • 1994
  • A method has been proposed for the fully automatic detection of left ventricular endocardial boundary in 2D short axis echocardlogram using geometric model. The procedure has the following three distinct stages. First, the initial center is estimated by the initial center estimation algorithm which is applied to decimated image. Second, the center estimation algorithm is applied to original image and then best-fit elliptic model estimation is processed. Third, best-fit boundary is detected by the cost function which is based on the best-fit elliptic model. The proposed method shows effective result without manual intervention by a human operator.

  • PDF

A Study of Data Mining Optimization Model for the Credit Evaluation

  • Kim, Kap-Sik;Lee, Chang-Soon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.825-836
    • /
    • 2003
  • Based on customer information and financing processes in capital market, we derived individual models by applying multi-layered perceptrons, MDA, and decision tree. Further, the results from the existing single models were compared with the results from the integrated model that was developed using genetic algorithm. This study contributes not only to verifying the existing individual models and but also to overcoming the limitations of the existing approaches. We have depended upon the approaches that compare individual models and search for the best-fit model. However, this study presents a methodology to build an integrated data mining model using genetic algorithm.

  • PDF

The Comparison of Sphere Fitting Methods for Estimating the Center of Rotation on a Human Joint (인체관절의 회전중심 추정을 위한 구적합법의 비교)

  • Kim, Jin-Uk
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.1
    • /
    • pp.53-62
    • /
    • 2013
  • The methods of fitting a circle to measured data, geometric fit and algebraic fit, have been studied profoundly in various areas of science. However, they have not been applied exactly to a biomechanics discipline for locating the center of rotation of a human joint. The purpose of this study was to generalize the methods to fitting spheres to the points in 3-dimension, and to estimate the center of rotation of a hip joint by three of geometric fit methods(Levenberg-Marquardt, Landau, and Sp$\ddot{a}$th) and four of algebraic fit methods(Delogne-K${\aa}$sa, Pratt, Taubin, and Hyper). 1000 times of simulation experiments for flexion/extension and ad/abduction at an artificial hip joint with four levels of range of motion(10, 15, 30, and $60^{\circ}$) and three levels of angular velocity(30, 60, and $90^{\circ}$/s) were executed to analyze the responses of the estimated center of rotation. The results showed that the Sp$\ddot{a}$th estimate was very sensitive to the marker near the center of rotation. The bias of Delogne-K${\aa}$sa estimate existed in an even larger range of motion. The Levenberg-Marquardt algorithm of geometric fit and the Pratt of algebraic fit showed the best results. The combination of two methods, using the Pratt's estimate as initial values of the Levenberg-Marquardt algorithm, could be a candidate of more valid estimator.

Bin Packing-Exchange Algorithm for 3-Partition Problem (3-분할 문제의 상자 채우기-교환 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.95-102
    • /
    • 2022
  • This paper proposed a linear time algorithm for a three-partition problem(TPP) in which a polynomial time algorithm is not known as NP-complete. This paper proposes a backtracking method that improves the problems of not being able to obtain a solution of the MM method using the sum of max-min values and third numbers, which are known polynomial algorithms in the past. In addition, the problem of MM applying the backtracking method was improved. The proposed algorithm partition the descending ordered set S into three and assigned to the forward, backward, and best-fit allocation method with maximum margin, and found an optimal solution for 50.00%, which is 5 out of 10 data in initial allocation phase. The remaining five data also showed performance to find the optimal solution by exchanging numbers between surplus boxes and shortage boxes at least once and up to seven times. The proposed algorithm that performs simple allocation and exchange optimization with less O(k) linear time performance complexity than the three-partition m=n/3 data, and it was shown that there could be a polynomial time algorithm in which TPP is a P-problem, not NP-complete.

Energy and Service Level Agreement Aware Resource Allocation Heuristics for Cloud Data Centers

  • Sutha, K.;Nawaz, G.M.Kadhar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5357-5381
    • /
    • 2018
  • Cloud computing offers a wide range of on-demand resources over the internet. Utility-based resource allocation in cloud data centers significantly increases the number of cloud users. Heavy usage of cloud data center encounters many problems such as sacrificing system performance, increasing operational cost and high-energy consumption. Therefore, the result of the system damages the environment extremely due to heavy carbon (CO2) emission. However, dynamic allocation of energy-efficient resources in cloud data centers overcomes these problems. In this paper, we have proposed Energy and Service Level Agreement (SLA) Aware Resource Allocation Heuristic Algorithms. These algorithms are essential for reducing power consumption and SLA violation without diminishing the performance and Quality-of-Service (QoS) in cloud data centers. Our proposed model is organized as follows: a) SLA violation detection model is used to prevent Virtual Machines (VMs) from overloaded and underloaded host usage; b) for reducing power consumption of VMs, we have introduced Enhanced minPower and maxUtilization (EMPMU) VM migration policy; and c) efficient utilization of cloud resources and VM placement are achieved using SLA-aware Modified Best Fit Decreasing (MBFD) algorithm. We have validated our test results using CloudSim toolkit 3.0.3. Finally, experimental results have shown better resource utilization, reduced energy consumption and SLA violation in heterogeneous dynamic cloud environment.

GEOMETRIC FITTING OF CIRCLES

  • Kim, Ik-Sung
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.983-994
    • /
    • 2000
  • We consider the problem of determining the circle of best fit to a set of data points in the plane. In [1] and [2] several algorithms already have been given for fitting a circle in least squares sense of minimizing the geometric distances to the given data points. In this paper we present another new descent algorithm which computes a parametric represented circle in order to minimize the sum of the squares of the distances to the given points. For any choice of starting values our algorithm has the advantage of ensuring convergence to a local minimum. Numerical examples are given.

Algorithm for Block Packing of Main Memory Allocation Problem (주기억장치 할당 문제의 블록 채우기 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.99-105
    • /
    • 2022
  • This paper deals with the problem of appropriately allocating multiple processors arriving at the ready queue to the block in the user space of the main memory is divided into blocks of variable size at compilation time. The existing allocation methods, first fit(FF), best fit(BF), worst fit(WF), and next fit(NF) methods, had the disadvantage of waiting for a specific processor because they failed to allocate all processors arriving at the ready queue. The proposed algorithm in this paper is a simple block packing algorithm that allocates as many processors as possible to the largest block by sorting the size of the partitioned blocks(holes) and the size of the processor in the ready queue in descending order. The application of the proposed algorithm to nine benchmarking experimental data showed the performance of allocating all processors while having minimal internal fragment(IF) for all eight data except one data in which the weiting processor occurs due to partition errors.