• Title/Summary/Keyword: best linear unbiased

Search Result 82, Processing Time 0.018 seconds

Estimation of genetic correlations and genomic prediction accuracy for reproductive and carcass traits in Hanwoo cows

  • Md Azizul Haque;Asif Iqbal;Mohammad Zahangir Alam;Yun-Mi Lee;Jae-Jung Ha;Jong-Joo Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.4
    • /
    • pp.682-701
    • /
    • 2024
  • This study estimated the heritabilities (h2) and genetic and phenotypic correlations between reproductive traits, including calving interval (CI), age at first calving (AFC), gestation length (GL), number of artificial inseminations per conception (NAIPC), and carcass traits, including carcass weight (CWT), eye muscle area (EMA), backfat thickness (BF), and marbling score (MS) in Korean Hanwoo cows. In addition, the accuracy of genomic predictions of breeding values was evaluated by applying the genomic best linear unbiased prediction (GBLUP) and the weighted GBLUP (WGBLUP) method. The phenotypic data for reproductive and carcass traits were collected from 1,544 Hanwoo cows, and all animals were genotyped using Illumina Bovine 50K single nucleotide polymorphism (SNP) chip. The genetic parameters were estimated using a multi-trait animal model using the MTG2 program. The estimated h2 for CI, AFC, GL, NAIPC, CWT, EMA, BF, and MS were 0.10, 0.13, 0.17, 0.11, 0.37, 0.35, 0.27, and 0.45, respectively, according to the GBLUP model. The GBLUP accuracy estimates ranged from 0.51 to 0.74, while the WGBLUP accuracy estimates for the traits under study ranged from 0.51 to 0.79. Strong and favorable genetic correlations were observed between GL and NAIPC (0.61), CWT and EMA (0.60), NAIPC and CWT (0.49), AFC and CWT (0.48), CI and GL (0.36), BF and MS (0.35), NAIPC and EMA (0.35), CI and BF (0.30), EMA and MS (0.28), CI and AFC (0.26), AFC and EMA (0.24), and AFC and BF (0.21). The present study identified low to moderate positive genetic correlations between reproductive and CWT traits, suggesting that a heavier body weight may lead to a longer CI, AFC, GL, and NAIPC. The moderately positive genetic correlation between CWT and AFC, and NAIPC, with a phenotypic correlation of nearly zero, suggesting that the genotype-environment interactions are more likely to be responsible for the phenotypic manifestation of these traits. As a result, the inclusion of these traits by breeders as selection criteria may present a good opportunity for developing a selection index to increase the response to the selection and identification of candidate animals, which can result in significantly increased profitability of production systems.

Selection for Duration of Fertility and Mule Duck White Plumage Colour in a Synthetic Strain of Ducks (Anas platyrhynchos)

  • Liu, H.C.;Huang, J.F.;Lee, S.R.;Liu, H.L.;Hsieh, C.H.;Huang, C.W.;Huang, M.C.;Tai, C.;Poivey, J.P.;Rouvier, R.;Cheng, Y.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.5
    • /
    • pp.605-611
    • /
    • 2015
  • A synthetic strain of ducks (Anas platyrhynchos) was developed by introducing genes for long duration of fertility to be used as mother of mule ducklings and a seven-generation selection experiment was conducted to increase the number of fertile eggs after a single artificial insemination (AI) with pooled Muscovy semen. Reciprocal crossbreeding between Brown Tsaiya LRI-2 (with long duration of fertility) and Pekin L-201 (with white plumage mule ducklings) ducks produced the G0. Then G1 were intercrossed to produce G2 and so on for the following generations. Each female duck was inseminated 3 times, at 26, 29, and 32 weeks of age. The eggs were collected for 14 days from day 2 after AI. Individual data regarding the number of incubated eggs (Ie), the number of fertile eggs at candling at day 7 of incubation (F), the total number of dead embryos (M), the maximum duration of fertility (Dm) and the number of hatched mule ducklings (H) with plumage colour were recorded. The selection criterion was the breeding values of the best linear unbiased prediction animal model for F. The results show high percentage of exhibited heterosis in G2 for traits to improve (19.1% for F and 12.9% for H); F with a value of 5.92 (vs 3.74 in the Pekin L-201) was improved in the G2. Heritabilities were found to be low for Ie ($h^2=0.07{\pm}0.03$) and M ($h^2=0.07{\pm}0.01$), moderately low for Dm ($h^2=0.13{\pm}0.02$), of medium values for H ($h^2=0.20{\pm}0.03$) and F ($h^2=0.23{\pm}0.03$). High and favourable genetic correlations existed between F and Dm ($r_g=0.93$), between F and H ($r_g=0.97$) and between Dm and H ($r_g=0.90$). The selection experiment showed a positive trend for phenotypic values of F (6.38 fertile eggs in G10 of synthetic strain vs 5.59 eggs in G4, and 3.74 eggs in Pekin L-201), with correlated response for increasing H (5.73 ducklings in G10 vs 4.86 in G4, and 3.09 ducklings in Pekin L-201) and maximum duration of the fertile period without increasing the embryo mortality rate. The average predicted genetic response for F was 40% of genetic standard deviation per generation of selection. The mule ducklings' feather colour also was improved. It was concluded that this study provided results for a better understanding of the genetics of the duration of fertility traits in the common female duck bred for mule and that the selection of a synthetic strain was effective method of improvement.