• Title/Summary/Keyword: best linear unbiased

Search Result 82, Processing Time 0.03 seconds

A FRAMEWORK TO UNDERSTAND THE ASYMPTOTIC PROPERTIES OF KRIGING AND SPLINES

  • Furrer Eva M.;Nychka Douglas W.
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.1
    • /
    • pp.57-76
    • /
    • 2007
  • Kriging is a nonparametric regression method used in geostatistics for estimating curves and surfaces for spatial data. It may come as a surprise that the Kriging estimator, normally derived as the best linear unbiased estimator, is also the solution of a particular variational problem. Thus, Kriging estimators can also be interpreted as generalized smoothing splines where the roughness penalty is determined by the covariance function of a spatial process. We build off the early work by Silverman (1982, 1984) and the analysis by Cox (1983, 1984), Messer (1991), Messer and Goldstein (1993) and others and develop an equivalent kernel interpretation of geostatistical estimators. Given this connection we show how a given covariance function influences the bias and variance of the Kriging estimate as well as the mean squared prediction error. Some specific asymptotic results are given in one dimension for Matern covariances that have as their limit cubic smoothing splines.

A Quantitative Model for the Projection of Health Expenditure (의료비 결정요인 분석을 위한 계량적 모형 고안)

  • Kim, Han-Joong;Lee, Young-Doo;Nam, Chung-Mo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.24 no.1 s.33
    • /
    • pp.29-36
    • /
    • 1991
  • A multiple regression analysis using ordinary least square (OLS) is frequently used for the projection of health expenditure as well as for the identification of factors affecting health care costs. Data for the analysis often have mixed characteristics of time series and cross section. Parameters as a result of OLS estimation, in this case, are no longer the best linear unbiased estimators (BLUE) because the data do not satisfy basic assumptions of regression analysis. The study theoretically examined statistical problems induced when OLS estimation was applied with the time series cross section data. Then both the OLS regression and time series cross section regression (TSCS regression) were applied to the same empirical da. Finally, the difference in parameters between the two estimations were explained through residual analysis.

  • PDF

An Improved Composite Estimator for Cut-off Sampling

  • Hwang, Hee-Jin;Shin, Key-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.5
    • /
    • pp.367-376
    • /
    • 2013
  • Cut-off sampling is widely used for a highly skewed population like a business survey by discarding a part of the population (the take-nothing stratum). In this paper, we suggest a new composite estimator of the take-nothing stratum total obtained by use of the survey results of the take-nothing stratum and a take-some sub-stratum (a part of take-some stratum) for a more accurate estimate of the population total. Small simulation studies are conducted to compare the performances of known estimators and the new composite estimator suggested in this study. In addition, we use briquette consumption survey data for real data analysis.

A Study on the Performance of MLE and BLUE for the 2 Parameter Weibull Distribution (2-파라미터 바이블 분포에 대한 MLE와 BLUE의 성능에 관한 연구)

  • Lee, S.K.;Koh, J.H.;Kim, I.S.;Kim, T.H.;Kim, Y.S.;Sung, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.396-398
    • /
    • 1998
  • Two estimators for the scale (${\delta}$) and shape (${\beta}$) parameters and percentiles of the Weibull distribution were compared. These estimators are maximum likelihood estimator (MLE) and the best linear unbiased estimator (BLUE). The performance of these estimators are compared by mean square error and studied in complete and type II censored samples of size 10 and 25. The overall performance of the MLE was similar to that of the BLUE.

  • PDF

Shrinkage Small Area Estimation Using a Semiparametric Mixed Model (준모수혼합모형을 이용한 축소소지역추정)

  • Jeong, Seok-Oh;Choo, Manho;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.4
    • /
    • pp.605-617
    • /
    • 2014
  • Small area estimation is a statistical inference method to overcome large variance due to a small sample size allocated in a small area. A shrinkage estimator obtained by minimizing relative error(RE) instead of MSE has been suggested. The estimator takes advantage of good interpretation when the data range is large. A semiparametric estimator is also studied for small area estimation. In this study, we suggest a semiparametric shrinkage small area estimator and compare small area estimators using labor statistics.

Polymer Quality Control Using Subspace-based Model Predictive Control with BLUE Filter

  • Song, In-Hyoup;Yoo, Kee-Youn;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.357-357
    • /
    • 2000
  • In this study, we consider a multi-input multi-output styrene polymerization reactor system for which the monomer conversion and the weight average molecular weight are controlled by manipulating the jacket inlet temperature and the feed flow rate. The reactor system is identified by using a linear subspace identification method and then the output feedback model predictive controller is constructed on the basis of the identified model. Here we use the Best Linear Unbiased Estimation (BLUE) filter as a stochastic estimator instead of the Kalman filter. The BLUE filter observes the state successfully without any a priori information of initial states. In contrast to the Kalman filter, the BLUE filter eliminates the offset by observing the state of the augmented system regardless of a priori information of the initial state for an integral white noise augmented system. A BLUE filter has a finite impulse response (FIR) structure which utilizes finite measurements and inputs on the most recent time interval [i-N, i] in order to avoid long processing times.

  • PDF

Genomic selection through single-step genomic best linear unbiased prediction improves the accuracy of evaluation in Hanwoo cattle

  • Park, Mi Na;Alam, Mahboob;Kim, Sidong;Park, Byoungho;Lee, Seung Hwan;Lee, Sung Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.10
    • /
    • pp.1544-1557
    • /
    • 2020
  • Objective: Genomic selection (GS) is becoming popular in animals' genetic development. We, therefore, investigated the single-step genomic best linear unbiased prediction (ssGBLUP) as tool for GS, and compared its efficacy with the traditional pedigree BLUP (pedBLUP) method. Methods: A total of 9,952 males born between 1997 and 2018 under Hanwoo proven-bull selection program was studied. We analyzed body weight at 12 months and carcass weight (kg), backfat thickness, eye muscle area, and marbling score traits. About 7,387 bulls were genotyped using Illumina 50K BeadChip Arrays. Multiple-trait animal model analyses were performed using BLUPF90 software programs. Breeding value accuracy was calculated using two methods: i) Pearson's correlation of genomic estimated breeding value (GEBV) with EBV of all animals (rM1) and ii) correlation using inverse of coefficient matrix from the mixed-model equations (rM2). Then, we compared these accuracies by overall population, info-type (PHEN, phenotyped-only; GEN, genotyped-only; and PH+GEN, phenotyped and genotyped), and bull-types (YBULL, young male calves; CBULL, young candidate bulls; and PBULL, proven bulls). Results: The rM1 estimates in the study were between 0.90 and 0.96 among five traits. The rM1 estimates varied slightly by population and info-type, but noticeably by bull-type for traits. Generally average rM2 estimates were much smaller than rM1 (pedBLUP, 0.40 to0.44; ssGBLUP, 0.41 to 0.45) at population level. However, rM2 from both BLUP models varied noticeably across info-types and bull-types. The ssGBLUP estimates of rM2 in PHEN, GEN, and PH+ GEN ranged between 0.51 and 0.63, 0.66 and 0.70, and 0.68 and 0.73, respectively. In YBULL, CBULL, and PBULL, the rM2 estimates ranged between 0.54 and 0.57, 0.55 and 0.62, and 0.70 and 0.74, respectively. The pedBLUP based rM2 estimates were also relatively lower than ssGBLUP estimates. At the population level, we found an increase in accuracy by 2.0% to 4.5% among traits. Traits in PHEN were least influenced by ssGBLUP (0% to 2.0%), whereas the highest positive changes were in GEN (8.1% to 10.7%). PH+GEN also showed 6.5% to 8.5% increase in accuracy by ssGBLUP. However, the highest improvements were found in bull-types (YBULL, 21% to 35.7%; CBULL, 3.3% to 9.3%; PBULL, 2.8% to 6.1%). Conclusion: A noticeable improvement by ssGBLUP was observed in this study. Findings of differential responses to ssGBLUP by various bulls could assist in better selection decision making as well. We, therefore, suggest that ssGBLUP could be used for GS in Hanwoo proven-bull evaluation program.

Comparison of genome-wide association and genomic prediction methods for milk production traits in Korean Holstein cattle

  • Lee, SeokHyun;Dang, ChangGwon;Choy, YunHo;Do, ChangHee;Cho, Kwanghyun;Kim, Jongjoo;Kim, Yousam;Lee, Jungjae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.913-921
    • /
    • 2019
  • Objective: The objectives of this study were to compare identified informative regions through two genome-wide association study (GWAS) approaches and determine the accuracy and bias of the direct genomic value (DGV) for milk production traits in Korean Holstein cattle, using two genomic prediction approaches: single-step genomic best linear unbiased prediction (ss-GBLUP) and Bayesian Bayes-B. Methods: Records on production traits such as adjusted 305-day milk (MY305), fat (FY305), and protein (PY305) yields were collected from 265,271 first parity cows. After quality control, 50,765 single-nucleotide polymorphic genotypes were available for analysis. In GWAS for ss-GBLUP (ssGWAS) and Bayes-B (BayesGWAS), the proportion of genetic variance for each 1-Mb genomic window was calculated and used to identify informative genomic regions. Accuracy of the DGV was estimated by a five-fold cross-validation with random clustering. As a measure of accuracy for DGV, we also assessed the correlation between DGV and deregressed-estimated breeding value (DEBV). The bias of DGV for each method was obtained by determining regression coefficients. Results: A total of nine and five significant windows (1 Mb) were identified for MY305 using ssGWAS and BayesGWAS, respectively. Using ssGWAS and BayesGWAS, we also detected multiple significant regions for FY305 (12 and 7) and PY305 (14 and 2), respectively. Both single-step DGV and Bayes DGV also showed somewhat moderate accuracy ranges for MY305 (0.32 to 0.34), FY305 (0.37 to 0.39), and PY305 (0.35 to 0.36) traits, respectively. The mean biases of DGVs determined using the single-step and Bayesian methods were $1.50{\pm}0.21$ and $1.18{\pm}0.26$ for MY305, $1.75{\pm}0.33$ and $1.14{\pm}0.20$ for FY305, and $1.59{\pm}0.20$ and $1.14{\pm}0.15$ for PY305, respectively. Conclusion: From the bias perspective, we believe that genomic selection based on the application of Bayesian approaches would be more suitable than application of ss-GBLUP in Korean Holstein populations.

Evaluation of accuracies of genomic predictions for body conformation traits in Korean Holstein

  • Md Azizul Haque;Mohammad Zahangir Alam;Asif Iqbal;Yun Mi Lee;Chang Gwon Dang;Jong Joo Kim
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.555-566
    • /
    • 2024
  • Objective: This study aimed to assess the genetic parameters and accuracy of genomic predictions for twenty-four linear body conformation traits and overall conformation scores in Korean Holstein dairy cows. Methods: A dataset of 2,206 Korean Holsteins was collected, and genotyping was performed using the Illumina Bovine 50K single nucleotide polymorphism (SNP) chip. The traits investigated included body traits (stature, height at front end, chest width, body depth, angularity, body condition score, and locomotion), rump traits (rump angle, rump width, and loin strength), feet and leg traits (rear leg set, rear leg rear view, foot angle, heel depth, and bone quality), udder traits (udder depth, udder texture, udder support, fore udder attachment, front teat placement, front teat length, rear udder height, rear udder width, and rear teat placement), and overall conformation score. Accuracy of genomic predictions was assessed using the single-trait animal model genomic best linear unbiased prediction method implemented in the ASReml-SA v4.2 software. Results: Heritability estimates ranged from 0.10 to 0.50 for body traits, 0.21 to 0.35 for rump traits, 0.13 to 0.29 for feet and leg traits, and 0.05 to 0.46 for udder traits. Rump traits exhibited the highest average heritability (0.29), while feet and leg traits had the lowest estimates (0.21). Accuracy of genomic predictions varied among the twenty-four linear body conformation traits, ranging from 0.26 to 0.49. The heritability and prediction accuracy of genomic estimated breeding value (GEBV) for the overall conformation score were 0.45 and 0.46, respectively. The GEBVs for body conformation traits in Korean Holstein cows had low accuracy, falling below the 50% threshold. Conclusion: The limited response to selection for body conformation traits in Korean Holsteins may be attributed to both the low heritability of these traits and the lower accuracy estimates for GEBVs. Further research is needed to enhance the accuracy of GEBVs and improve the selection response for these traits.

Efficacy of Auxiliary Traits in Estimation of Breeding Value of Sires for Milk Production

  • Sahana, G.;Gurnani, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.511-514
    • /
    • 1999
  • Data pertaining to 1111 first lactation performance record of Karan Fries (Holstein-Friesian $\times$ Zebu) cows spread over a period of 21 years and sired by 72 bulls were used to examine the efficiency of sire indices for lactation milk production using auxiliary traits. First lactation length, first service period, first calving interval, first dry period and age at first calving were considered as auxiliary traits. The efficiency of this method was compared with simple daughter average index (D), contemporary comparison method (CC), least-square method (LSQ), simplified regressed least-squares method (SRLS) and best linear unbiased prediction (BLUP) for lactation milk production. The relative efficiency of sire evaluation methods using one auxiliary trait was lower (24.2-32.8%) in comparison to CC method, the most efficient method observed in this study. Use of two auxiliary traits at a time did not further improve the efficiency. The auxiliary sire indices discriminate better among bulls as the range of breeding values were higher in these methods in comparison to conventional sire evaluation methods. The rank correlation between breeding values estimated using auxiliary traits were high (0.77-0.78) with CC method. The rank correlation among auxiliary sire indices ranged from 0.98 to 0.99, indicating similar ranking of sire for breeding values of milk production in all the auxiliary sire indices.