• Title/Summary/Keyword: bergen jig

Search Result 2, Processing Time 0.015 seconds

Investigation into a Chemical Cracking and the Measurement of Stress in a Polycarbonate Specimen through Deformation Jig (변형지그를 이용한 폴리카보네이트 시편의 케미컬 크랙킹 및 응력측정에 관한 연구)

  • Yoo, Seo Jeong;Hong, Hyoung Sik;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.645-649
    • /
    • 2014
  • The causes of residual stress in an injection molded part are high temperature variation and shear stress during molding process. Chemical cracking test is one of the methods of measuring residual stress and cracks are developed according to the degree of residual stress. In this study, the relationship between chemical cracking and exerted stress have been investigated. Deformation jig was designed and used to give a stress through deformation in a specimen. Specimens were molded by a hot press using polycarbonate (PC) and annealed to remove residual stresses in the specimens. Specimens were fixed in the deformation jig and immersed into the solvent to create cracks in the specimens. Solvents were prepared by using tetrahydrofuran and methyl alcohol. As stress accordance with the deformation in the specimen increased, the frequency and density of cracks in the specimen also increased. The results of this study can be used for the measurement of residual stress quantitatively in an injection molded PC product using a chemical cracking method.

A Study on the Stress Measurement in a Plastic Product using Chemical Cracking Method (케미칼 크랙킹 방법을 이용한 플라스틱 제품의 응력측정에 관한 연구)

  • Won, S.T.;Kim, T.B.;Lee, S.;Won, J.M.;Cha, K.H.;Lyu, M.Y.
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.336-340
    • /
    • 2012
  • Residual stress in the injection molded part is originated from thermal shrinkage and shear stress during injection molding process. There are many measurement methods of residual stress in the plastic part. Residual stress in opaque products can be measured by chemical cracking test. This method enables the solvent and specimen to react and to cause cracks. Cracks developed according to the level of residual stress. Thus the stresses in plastic part can be quantitatively measured by counting the number of cracks or measuring the size of cracks. Relationship between stress and number of cracks in a plastic specimen has been investigated in this study. Bergen jig was used to give a strain in the specimens those were molded using PC/PBT and PC/ABS. Solvent for the chemical cracking test was prepared using tetrahydrofuran and methyl alcol with the ratio of 1 to 3. Stresses in the specimen can be calculated by strains those were imposed by Bergen jig. Cracks were developed for stress higher than certain level. The number of cracks increased by second order function for stress.