• Title/Summary/Keyword: benzo(k)fluoranthene

Search Result 62, Processing Time 0.02 seconds

Characteristics of Seasonal Distributions of Fine Particles ($PM_{2.5}$) and Particle-Associated Polycyclic Aromatic Hydrocarbons in Urban, Metropolitan and Industrial Complex Sites (중소도시, 대도시 및 산업지역에서 채취한 미세분진 ($PM_{2.5}$)과 입자상 다환방향족탄화수소의 계절적인 분포 특성)

  • Kim He-Kap;Jung Kyung-Mi;Kim Tae-Sik
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.1 s.52
    • /
    • pp.45-56
    • /
    • 2006
  • This study was conducted to investigate seasonal distributions of fine particles ($PM_{2.5}$) and associated polycyclic aromatic hydrocarbons (PAHs) at three cities. $PM_{2.5}$ samples were collected on glass fiber filters at urban (Chuncheon), metropolitan (Seoul), and industrial complex sites (Ulsan) from September, 2002 to February, 2004 using the Andersen FH 95 Particulate Sampler. About five 24-hour samples were collected from each site per season. The filters were analyzed for mass and six selected PAHs concentrations. $PM_{2.5}$ concentrations were the highest either in winter or spring, which could be attributed to the increase of fossil fuel combustion in winter or the transport of yellow sand to the Korean peninsula from China in spring, respectively. Regional $PM_{2.5}$ concentrations were higher in the order of Seoul>Chuncheon>Ulsan without statistical difference among cities. The filters were extracted using dichloromethane in an ultrasonicator and analyzed for six PAHs (anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, and benzo[a]pyrene) with HPLC. Total PAHs concentrations were statistically different among seasons in each site, and the highest concentrations were observed in winter at each sampling site. For total samples collected, the median total PAHs concentrations in Chuncheon ($4.6ng/m^3$) and Seoul ($4.4ng/m^3$) were approximately two times higher than that in Ulsan ($2.1ng/m^3$). Chrysene was a component found in the highest proportion among total PAHs at each site. Carcinogenic risks calculated based on the BaP toxic equivalency factors (TEFs) over the whole sampling period were higher in the order of Chuncheon>Seoul>Ulsan. This study suggests that the atmosphere of Chuncheon is contaminated with particulate matter and PAHs at the levels equivalent to those of Seoul and that an appropriate measure needs to be taken to mitigate human health risks from inhalation exposure to airborne fine particles.

Indoor Exposure and Health Risk of Polycyclic Aromatic Hydrocarbons (PAHs) in Public Facilities, Korea

  • Kim, Ho-Hyun;Lim, Young-Wook;Jeon, Jun-Min;Kim, Tae-Hun;Lee, Geon-Woo;Lee, Woo-Seok;Lim, Jung-Yun;Shin, Dong-Chun;Yang, Ji-Yeon
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.2
    • /
    • pp.72-84
    • /
    • 2013
  • In the study, pollution levels of indoor polycyclic aromatic hydrocarbons (PAHs) in public facilities (vapor phase or particulate phase) were evaluated, and a health risk assessment (HRA) was carried out based on exposure scenarios. Public facilities in Korea covered by the law, including underground subway stations, funeral halls, child care facilities, internet cafes (PC-rooms), and exhibition facilities (6 locations for each type of facility, for a total of 48 locations), were investigated for indoor assessment. For the HRA, individual excess cancer risk (ECR) was estimated by applying main toxic equivalency factor (TEF) values suggested in previous studies. Among the eight public facilities, internet cafes showed the highest average $PM_{2.5}$ concentration at $110.0{\mu}g/m^3$ (range: $83.5-138.5{\mu}g/m^3$). When assuming a risk of facility exposure time based upon the results of the surveys for each public facility, the excess cancer risk using the benzo(a)pyrene indicator assessment method was estimated to be $10^{-7}-10^{-6}$ levels for each facility. Based on the risk associated with various TEF values, the excess cancer risk based upon the seven types cancer EPA (1993) and Malcolm & Dobson's (1994) assessment method was estimated to be $10^{-7}-10^{-5}$ for each facility. The excess cancer risk estimated from the TEF EPA (2010) assessment was the highest: $10^{-7}-10^{-4}$ for each facility. This is due to the 10-fold difference between the TEF of dibenzo(a,e)fluoranthene in 2010 and in 1994. The internet cafes where smoking was the clear pollutant showed the highest risk level of $10^{-4}$, which exceeded the World Health Organization's recommended risk of $1{\times}10^{-6}$. All facilities, with the exception of internet cafes, showed a $10^{-6}$ risk level. However, when the TEFs values of the US EPA (2010) were applied, the risk of most facilities in this study exceeded $1{\times}10^{-6}$.