• Title/Summary/Keyword: bentonite content

Search Result 157, Processing Time 0.031 seconds

Effect of Sand Contents on Plastic and Liquid Limits and Shear Strength of Clays (모래 함유량이 점토의 액소성한계 및 전단강도에 미치는 영향)

  • Park, Sung-Sik;Nong, Zhenzhen
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.2
    • /
    • pp.65-76
    • /
    • 2014
  • For soil improvement, sand mats or sand compaction piles are often constructed on soft marine clays. In such cases, some amounts of sand and clay are inevitably mixed. Sand or gravel often exists in the weathered soils near the slope surface. This research investigates the effect of mixing sand content on consistency limits and shear strength of clays. Firstly, sand was mixed with kaolinite or bentonite at 0, 9, 17, 23, 29, 33, 50% and then liquid and plastic limits were measured. Both plastic and liquid limits decreased as a sand content increased. The water content of clay-sand mixtures with different sand content increased by 10% or 20% step by step and then their undrained shear strength was measured using a portable vane shear device called Torvane. For all cases, undrained shear strength of clay-sand mixtures decreased rapidly until reaching a certain value. Their state changed from undrained to drained state gradually as the sand content increased, which caused their undrained shear strength to decrease. On the other hand, a series of direct shear tests were also conducted on such clay-sand mixtures to investigate the effect of sand content on cohesion and angle of internal friction. It was found from clay-sand mixtures that their cohesion decreased but angle of internal friction increased as the sand content increased.

Effect of Chewlical Transport on Stability of Earth Embankment

  • Ahn, Tae bong
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.109-126
    • /
    • 1996
  • In this study, the chemical fluid considered is sodium chloride sloutions. The concentrations for the sodium chloride solutions are varied from 0 to 20%. A series of lab oratory triaxial tests are performed on the cylindrical specimens of sand bentonite mixture with different (5, 10, 15%) sodium chloride content solutions. Deformation(elastic modulus, E) and strength (cohesion, c', and angle of friction, f') parameters are obtained from the triaxial tests and they are expressed as functions of conf'ming pressure and sodium chloride solution concentrations. The stress-strain-strength behavior based on the above strength parameters is introduced to the finite element method with a residual flow procedure (RFP). By integrating a slope stability (limit equilibrium) procedure in the finite element method, factors of safety with time are computed.

  • PDF

Occurrence and Physico-chemical Properties of the Smectite-rich Clays from the Samcheok Area in Kangwon-do, Korea (강원도 삼척지역의 스멕타이트질 점토의 산상 및 특성)

  • Hwang, Jin-Yeon;Park, Seong-Wan;Lee, Sang-Hyon;Choi, Soo-Yong
    • Economic and Environmental Geology
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 1995
  • The smectite-rich clays were found locally in Paleozoic calcareous sedimentary rocks in the Samcheok area. Their occurrences were investigated in detail, and the physico-chemical properties of the clays were also determined by X-ray diffraction, chemical analysis, thermal analysis and cation exchanging experiment. The smectite clays occur as the fissure filling dyke developed in calcareous sedimentary rock and as alteration products of intrusive rhyolite. Most of clays occur at the contact between the sedimentary rock and the rhyolite, and the alteration zone was observed only in rhyolite body close to the contact. Judging from their occurrences, it is believed that the smectite-rich clays in this area were formed by the hydrothemal alteration. The smectite clays from the area are mainly composed of Ca-montmorillonite, and associated with small quantities of quartz, opal-CT and feldspar. The montmorillonites from this area are lower in Fe content, and higher in exchangeable Ca ion, compared to those of bentonite from the Yangnam-Yeongil area.

  • PDF

Formaldehyde Adsorption and Physical Characteristics of Hydrothermal Reacted Panels Using Porous Materials (다공성 원료를 사용한 수열합성 패널의 물성과 포름알데히드 흡착 특성)

  • Im, Du-Hyuk;Chu, Yong-Sik;Song, Hoon;Lee, Jong-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.627-632
    • /
    • 2009
  • Formaldehyde emissions from the construct was harmful to human. Diatomite, bentonite and zeolite were used as porous materials for fabricating panels. Formaldehyde adsorption and physical characteristics of porous materials were investigated and hydrothermal method was applied to fabricate panels. Formaldehyde adsorption contents of panels with porous materials were higher than that of panel without porous materials. The panels with Cheolwon diatomite and Pohang zeolite showed excellent characteristics of Formaldehyde adsorption. These characteristics were caused by higher surface area and pore volume of porous materials. Formaldehyde adsorption contents were influenced by surface area and pore volume of panels. Correlation coefficient between surface area and Formaldehyde adsorption content of panels was 0.87. The panels with porous materials had higher strength than that without porous materials because of bridging role particles.

Characteristics of TPH Decomposition in a Close-typed Simulated Biopile System Amended with a Sintered Porous Media (소결다공체를 적용한 Closed Type 모사바이오파일시스템의 TPH 분해 특성)

  • Jung, Hyun-Gyu;Choi, Sang-Il;Kim, Hye-Jin;Kim, Sang-Kook;Kim, Yu-Beom
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.415-424
    • /
    • 2011
  • This research was conducted to verified the effectiveness of a sintered porous media coated with organic matter as nutrient source and microorganisms as decomposer effective in TPH decomposition for a closed-typed biopole system. The organic matter content in the sintered porous media which was developed with bentonite increased with increasing dilution ratio of pig slurry and the sintered porous media as well as decrease in the particle size of sintered porous media. The decomposition rate of TPH was significantly increased with increasing aeration than that under atmospheric condition. Also the sintered porous media containing organic matter and microorganisms proved that the decomposition was enhanced with addition of nutrients sources in addition to aeration periodically.

Preparation and Properties of Green Environment-Friendly Drilling Polymer Mud

  • Zhang, Feng-Jun;Sun, Xian-Yang;Li, Xuan;Kong, Cui;Liu, Jin;Chen, Qian-Bao;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.664-669
    • /
    • 2019
  • In this paper, a water-based green polymer mud is synthesized by simple compounding method. Effects of different kinds of tackifiers, their molecular weight on the viscosity of polymer mud and the effects of different fluid loss additives on mud fluid loss are studied. The results show that when polystyrene and anionic polyacrylamide with molecular weight of 8 ~ 10 million are used as the main thickening ingredient, polymer mud with high viscosity and high stability can be obtained. When the prepared polymer mud is formulated as NPAM: PEO: Hydroxypropyl cellulose(HPC) : Water = 42:10:10:100000 (unit: kg), the viscosity can reach 20.6 s, the filtration loss in 7.5 min is 24 mL, and the sand content is only 0.1 %. Compared with traditional bentonite mud, the green environment-friendly polymer mud has the advantages of small amount of waste, low environmental pollution, and low pulping cost, and can meet the construction needs for most topography and geomorphology drilling engineering.

Hygroscopic Characteristic of Hydrothermal reacted Panels using Porous Materials (다공성 원료와 수열합성으로 제조한 건축 내장용 패널의 흡방습 특성)

  • Kwon, Choon-Woo;Chu, Yong-Sik;Song, Hun;Lee, Jong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.705-708
    • /
    • 2008
  • Diatomite, bentonite and zeolite were used as porous materials for fabricating hygroscopic panels. Moisture adsorption and desorption of porous materials were investigated and hydrothermal method was applied to fabricate panels. Cheolwon diatomite and Pohang zeolite showed excellent characteristics of moisture adsorption and desorption. These characteristics were caused by higher surface area and pore volume of porous materials. Moisture adsorption contents were influenced by surface area and pore volume of panels, and surface area more effected on moisture adsorption. Moisture adsorption content of panel with 10% Pohang zeolite was 180g/m$^2$and that of 10% Cheolwon diatomite was 170g/m$^2$. Moisture desorption content of panel with 10% Pohang zeolite was 105g/m$^2$. Moisture adsorption contents of panel with porous materials were higher than that of panel without porous materials.

  • PDF

Experimental study on nano silica modified cement base grouting reinforcement materials

  • Zhou, Fei;Sun, Wenbin;Shao, Jianli;Kong, Lingjun;Geng, Xueyu
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.67-73
    • /
    • 2020
  • With the increasing number of underground projects, the problem of rock-water coupling catastrophe has increasingly become the focus of safety. Grouting reinforcement is gradually applied in subway, tunnel, bridge reinforcement, coal mine floor and other construction projects. At present, cement-based grouting materials are easy to shrink and have low strength after solidification. In order to overcome the special problems of high water pressure and high in-situ stress in deep part and improve the reinforcement effect. In view of the mining conditions of deep surrounding rock, a new type of cement-based reinforcement material was developed. We analyses the principle and main indexes of floor strengthening, and tests and optimizes the indexes and proportions of the two materials through laboratory tests. Then, observes and compares the microstructures of the optimized floor strengthening materials with those of the traditional strengthening materials through scanning electron microscopy. The test results show that 42.5 Portland cement-based grouting reinforcement material has the advantages of slight expansion, anti-dry-shrinkage, high compressive strength and high density when the water-cement ratio is 0.4, the content of bentonite is 4%, and the content of Nano Silica is 2.5%. The reinforcement effect is better than other traditional grouting reinforcement materials.

Reducing Soil Loss of Sloped Land using Lime-Organic Compost mixtures under Rainfall Simulation (인공강우 모사를 통한 석회/유기퇴비 혼합물의 경사지 토양유실 억제효과)

  • Koh, Il-Ha;Roh, Hoon;Hwang, Wonjae;Seo, Hyunggi;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.3
    • /
    • pp.43-50
    • /
    • 2018
  • In a previous study, the feasibility of four materials (bentonite, steelmaking slag, lime and organic compost) to induce soil aggregate formation was assessed and the mixtures of organic compost and lime were chosen as most effective amendments in terms of cost benefit. This work is a subsequent study to evaluate the effectiveness of those amendments in reducing soil loss in $15^{\circ}$ sloped agricultural area by using rainfall simulation test. Three different soils were treated with two conditions of organic compost/lime mixtures (2% + 2%, 3% + 1%, w/w). In the amended soils, soil fertility was increased due to the increase of CEC, T-N, and T-P. During the rainfall simulation, suspended solid in run-off water from amended soil were reduced by 43% ~ 78%. When the content of organic compost was higher than that of lime, reduction of soil loss was also increased by 67% ~ 78%. Sediment discharge was also decreased by 72% ~ 96% in the amended soil. Similar to the suspended solid analysis, higher organic compost content led to more reduction of soil discharging, which implies organic compost is more effective than lime in reducing soil loss. The overall result suggests that the mixtures of organic compost and lime could be used as amendment materials to reduce soil loss in sloped farmland.

Drying Characteristics of Soil by Microwave (Microwave에 의한 흙의 건조 특성 고찰)

  • Cho, Doohwan;Oh, Myounghak;Park, Junboum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.5-12
    • /
    • 2011
  • Water content is one of the significant engineering properties of soil for predicting the behavior of soil matrix. Conventional drying oven can be widely used to obtain the values by drying the soil specimens for 16 to 24 hours at $105^{\circ}C$. Although a number of experimental data has been accumulated for the conventional method of drying soil for water contents, shortcomings of the method are still hard to overcome such as long drying time for in situ use and the difficulty of taking prompt actions against emergency cases. Recently, ASTM and JGS have established microwave oven drying techniques for obtaining water contents to cope with those problems. And the reliability evaluation study has been also performed on the microwave oven drying for water contents. Feasibility study of the microwave oven drying was performed to confirm the process of the technique with Jumunjin sand, kaolinite, bentonite, weathered granite soil, and organic soil. Investigation was also conducted on the factors affecting and enhancing the reliability of the technique.