• Title/Summary/Keyword: benthic environment

Search Result 461, Processing Time 0.03 seconds

Characteristics of Meiofauna Community Inhabiting Continental Shelf of Yellow Sea, Korea (황해 대륙붕에 서식하는 중형저서동물 군집 특성)

  • JUNG, MIN GYU;KIM, DONGSUNG;KANG, TEAWOOK;OH, JE HYEOK;SHIN, AYONG;OH, CHUL WOONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.2
    • /
    • pp.103-125
    • /
    • 2022
  • This study aims to identify the community characteristics of meiofauna inhabiting the Yellow Sea continental shelf. To this end an annual survey was conducted considering the seasons from 2018 to 2020 at 13 stations with a depth of 18~90 m of the Yellow Sea located at latitudes 35, 36 and 37 degrees north latitude. The survey was conducted in three seasons of spring, summer, and autumn at 5 stations in October 2018, 9 stations in April 2019, and 6 stations in August 2020 was used to collect 3 repetitions at each station. The habitat density of meiobenthos in the surveyed area was in the range of 45~1029 inds./10 cm2, which was similar to the previous studies conducted in the Yellow Sea. The density of meiobenthos according to the seasons was 800±69 inds./10 cm2 in autumn, the highest, and the lowest at 260±48 inds./10 cm2 in summer. A total of 19 taxa appeared in meiobenthos, and the average value showed the number of nine taxa. Among the appearing taxa, the most dominant taxon was nematodes, accounting for 80.8% of the total density, followed by benthic copepods (8.8%) and benthic foraminifers (4.7%). As for the size distribution of medium benthic animals, the density of organisms corresponding to the size of 63~125 ㎛ was the highest, and 1~0.5 mm was the lowest. As for the vertical distribution in the sediments of medium benthic animals, the habitat density gradually decreased as the depth increased in the sediment surface layer. As a result of analysis of the N/C ratio, MPI, and ITD index using medium-sized benthic animals to identify the benthic environment, there were differences by season, but no values indicating pollution overall.

A new free-living marine nematode species of the genus Belbolla (Enoplida, Enchelidiidae) from a subtidal zone of the East Sea, Korea, with some ecological and biogeographical information

  • Rho, Hyun Soo;Lee, Heegab;Lee, Hyo Jin;Min, Wongi
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.578-585
    • /
    • 2020
  • A new free-living marine nematode species of the genus Belbolla Andrássy, 1973 belonging to the family Enchelidiidae is described based on specimens collected from the sediment of a subtidal benthic environmental habitat in the East Sea, Korea. Belbolla wonkimi sp. nov. differs from its congeners by the combination of the following characteristics: a relatively long body (3263-3396 ㎛), the absence of ocelli, nine oesophageal bulbs in the posterior pharynx, well-developed two winged precloacal supplements, longer spicule length(115-130㎛, 1.6-1.8 anal body diameter long), and a triangle-shaped shorter gubernacular apophysis (17-18 ㎛). Comparative tables on the biogeographical and morphological characteristics of Belbolla species are presented. A DIC (differential interference contrast) photomicrograph of the new species is also provided. This is the first taxonomic report on the genus Belbolla from Korean waters.

Development and Applications of an Optic Oxygen Sensor Datalogger for in situ Dissolved Oxygen Monitoring in Coastal Water (연안 용존산소 현장 모니터링용 산소광센서 데이터로거 개발 및 적용)

  • Jae Seong, Lee;Hyunmin Baek
    • Ocean and Polar Research
    • /
    • v.45 no.2
    • /
    • pp.33-42
    • /
    • 2023
  • Dissolved oxygen (DO) is a crucial parameter for assessing environmental conditions in aquatic ecosystems. However, commercial in situ dataloggers for oxygen optodes can be relatively expensive and limited in their specifications. In this paper, we present a novel design for a DO datalogger system based on the control boards family with RP2040 MCU chipset. Our design includes two types of dataloggers: a simple logging system and a programmable system for sampling rates via magnetic switches underwater for divers. We provide detailed descriptions of the system, including the MicroPython source code and drawings to aid in construction. We also discuss the various applications of our DO datalogger system in monitoring dissolved oxygen concentration in coastal waters and assessing the benthic metabolism of aquatic ecosystems. Our DO datalogger system provides an affordable and flexible option for researchers to accurately monitor DO concentrations in aquatic environments, and thereby improve our understanding of these complex ecosystems.

Community Analysis and Bological Water Quality Evaluation of Benthic Macroinvertebrate in Wangpi-cheon Watershed (왕피천 유역의 저서성 대형무척추동물 군집분석 및 생물학적 수질평가)

  • Park, Young-Jun;Jeon, Yong-Lak;Kim, Ki-Dong;Yoon, Hee-Nam;Nam, Sang-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.3
    • /
    • pp.327-343
    • /
    • 2013
  • The aim of this study is to perform community analysis and biological assessment of water quality using benthic macroinvertebrate from Wangpi-cheon watershed which is defined as conservation areas of ecosystem and landscape by ministry of environment in Korea. Field survey of the study area was carried out 2 times from June to September in 2012. As a result of the field survey, total 155 species of benthic macroinvertebrates in 74 families, 15 orders, 7 classes and 5 phyla were collected. The findings of community analysis using the classified species and individuals showed relatively low DI(Dominant Index) value of 0.22 and very high value of average H'(Diversity index) as 4.24. And the analyzed results of SI(Similarity Index) according to habitat types using functional feeding groups showed higher values of 94.51% and 93.19% respectively to tributary and main stream after the designation of conservation areas of ecosystem and landscape. These results infer that various species and lots of individual are widely distributed at Wangpi-cheon watershed and stream ecosystem of the study area is healthy and well maintained after the designation of conservation areas. And also, the calculated EPT value was 62.9% as high enough to explain the cleanness of Wangpi-cheon watershed. We evaluated environmental condition and biological water quality by using ESB(Ecological Score of Benthic macroinvertebrate community) and KSI(Korean Saprobic Index). The average evaluated ESB shows very high value of 208.2, therefore Wangpi-cheon watershed is designated as 'First priority protection waters' area and the value of KSI is 0.32 which meets the saprobic water quality standard as 'First class'.

Analysis of Trophic Structure and Energy Flows in the Uljin Marine Ranching Area, Korean East Sea (울진 바다목장 생태계의 영양구조와 에너지 흐름)

  • Kim, Hyung Chul;Lee, Jae Kyung;Kim, Mi Hyang;Choi, Byoung-Mi;Seo, In-Soo;Na, Jong Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.750-763
    • /
    • 2018
  • This study conducted 10 sampling sites survey 4 times to determine the trophic structure and energy flow of marine ecosystems for Uljin marine ranching area, Korean East Sea from March to October 2013. Based on the ecological characteristics of biological species, one used the non-Metric Multidimensional Scaling method based on the similarity of species. A total of 19 classified species groups formed categories including, top predators, seabirds, large pelagic fishes, small pelagic fishes, rockfishes, pleuronectiformes, benthic fishes, semi-benthic fishes, cephalopods, benthic feeders, epifauna, bivalves, abalone, Cnidaria, zooplankton, benthic algae, microalgae, phytoplankton and detritus. The biomass, production/biomass, consumption/biomass, diet composition data of each species groups to input data used in Ecopath mode estimated the trophic structure and energy flow of marine ecosystems in the Uljin marine ranching area. One estimated each species groups on the trophic level from 1 to 5.687. The sum of all consumption was estimated at $229.7t/km^2/yr$ and the sum of all exports was as estimated $3,432.4t/km^2/yr$. Total system throughput was at $6,796.2t/km^2/yr$, and the sum of all production was estimated at $3,613.1t/km^2/yr$. Net system production according to these results was estimated at $3,490.3t/km^2/yr$ and total biomass (excluding detritus) was estimated at $167.3t/km^2/yr$ in the Uljin marine ranching area.

Evaluating the Capping Effects of Dredged Materials on the Contaminated Sediment for Remediation and Restoration of the West Sea-Byeong Dumping Site (서해병 폐기물 배출해역 오염퇴적물의 정화·복원을 위한 준설토 피복 효과 평가)

  • Kang, Dong Won;Lee, Kwang Sup;Kim, Young Ryun;Choi, Ki-young;Kim, Chang-joon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.212-223
    • /
    • 2022
  • For the remediation and restoration of contaminated sediment at the West Sea-Byeong dumping site, dredged materials was dumped in 2013, 2014, 2016, and 2017. The physicochemical properties and benthic fauna in surface sediments of the capping area (5 stations) and natural recovery area (2 stations) were analyzed annually from 2014 to 2020 to evaluate the capping effect of the dredged materials. The natural recovery area had a finer sediment with a mean particle size of 5.91-7.64 Φ, while the sediment in the capping area consisted of coarse-grained particles with a mean particle size of 1.47-3.01 Φ owing to the capping effect of dredged materials. Considering that the contents of organic matters (COD, TOC, and TN) and heavy metals in the capping area are approximately 50 % lower (p<0.05) than that in the natural recovery area, it is judged that there is a capping effect of dredged materials. As a result of analyzing macrobenthic assemblages, the number of species and ecological indices of the capping area were significantly lower than that of the natural recovery area (p<0.05). The number of species and ecological indices at the capping area were increased for the first four years after the capping in 2013 and 2014 and then tended to decrease thereafter. It is presumed that opportunistic species, which have rapid growth and short lifetime, appeared dominantly during the initial phase of capping, and the additory capping in 2016 and 2017 caused re-disturbance in the habitat environment. In the natural recovery and capping areas, Azti's Marine Biotic Index (AMBI) was evaluated as a fine healthy status because it maintained the level of 2nd grades (Good), whereas Benthic Pollution Index (BPI) remained at the 1st and 2nd grade. Therefore, capping of dredged materials for remediation of contaminated sediment in the dumping site has the effect of reducing the pollution level. However, in terms of the benthic ecosystem, it is recommended that the recovery trend should be monitored long-term. Additionally, it is necessary to introduce an adaptive management strategy when expanding the project to remediate the contaminated sediment at the dumping area in the future.

Biodiversity Changes and Community Characteristics of Benthic Macroinvertebrates in Weir Section of the Nakdong River, South Korea (낙동강 보 구간 저서성 대형무척추동물의 생물다양성 변화와 군집 특성)

  • Jung, Sang Woo;Kim, Yoon-Ho;Lee, Jae-Ha;Kim, Dong-Gun;Kim, Min-Kyung;Kim, Hyun-Mac
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.2
    • /
    • pp.150-164
    • /
    • 2022
  • The objective of this study is to analyze the biodiversity changes and characteristics of the benthic macroinvertebrate community in the Nakdong River with eight weirs, which was constructed as one of the Four Major River Restoration Projects from May to October 2020. The study also includes the analysis of changes in the major groups of benthic macroinvertebrates for about ten years, from 2010 to 2020. The surveys collected 97 species of benthic macroinvertebrates belonging to 83 genera, 52 families, 18 orders, five classes, three phyla, and 128.1 individuals/m2. Chironomidae sp. and Tubificidae spp., which are pollutant indicators, dominated throughout the sections. The community analysis result shows the average dominant index and the diversity index of 0.62±0.20 and 1.87±0.63, respectively, and indicated the most stability of the freshwater ecosystem in the upper stream of the Nakdong River. The survey showed dominance by Chironomidae sp. at the center of the Nakdong River weir and the most unstable community in Chilgok and Gangjeong Goryeong weirs. The results of the community stability analysis showed a high distribution of the characteristic group I with high resilience and resistance and small distribution of characteristic group III with low resistance and resilience, indicating a very unstable condition of communities in the Nakdong River weir section. Predators were relatively abundant among the functional feeding groups (FFGs), whereas shredders, gathering-collectors, and filtering-collectors were relatively lower. Among the habitat orientation groups (HOGs), burrowers and climbers were dominant, indicating a wide distribution of groups in ecosystems with low dissolved oxygen. An endangered species level II of Macromia daimoji was found in Sangju and Nakdan weirs. The analysis results for 10 years from 2010 showed that the number of species and populations increased immediately after the dam construction but plummeted in 2016 and are now stabilizing. Chironomidae spp. has been dominant in all sections over the past 10 years, and they are currently maintained at a rate of about 50%. The EPT groups have decreased significantly since 2011, and the Plecoptera and Trichoptera of the group have not yet been restored. The population of Tubificidae spp. showed an increase after construction was completed in 2012 and drastically increased in 2015 and 2020. The species of Cristaria plicata, designated as endangered species level I, has not been observed since 2011 in Hapcheon Changnyeong weir. Moreover, Macromia daimoji was rarely observed in seven weirs until 2015, and it has been confirmed that the current distribution habitat has decreased rapidly.

Analysis of benthic macroinvertebrate fauna and habitat environment of Muljangori-oreum wetland in Jeju Island (제주도 물장오리오름 습지의 저서성 대형무척추동물상 및 서식 환경 분석)

  • Jung Soo Han;Chae Hui An;Jeong Cheol Lim;Kwang Jin Cho;Hwang Goo Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.363-373
    • /
    • 2022
  • On April 29, 2021 (1st), June 2 (2nd), and August 17 (3rd), we surveyed benthic macroinvertebrates fauna at Muljangori-oreum wetland in Bonggae-dong, Jeju Island, Korea. Muljangori-oreum wetland was divided into four areas. The survey was conducted in three accessible areas (areas 1-3). As a result of habitat environment analysis, the average monthly temperature from 2017 to 2021 was the highest in July and August and the lowest in December and February. This pattern was repeated. As a result of analyzing changes in vegetation and water surface area through satellite images, normalized difference vegetation index (NDVI) increased from February to July and decreased after July. Normalized difference water index (NDWI) was analyzed to show an inverse relationship. A total of 21 species from 13 families were identified in the qualitative survey and a total of 412 individuals of 24 species from 15 families were identified in the quantitative survey. A total of 26 species from 17 families, 8 orders, 3 classes, and 2 phyla of benthic macroinvertebrates were identified. The dominant species was Chronomidae spp. with 132 individuals (32.04%). Noterus japonicus was a subdominant species with 71 individuals (17.23%). As a result of comparative analysis of species identified in this study and the literature, it was confirmed that species diversity was high for Coleoptera and Odonata. Main functional feeding groups (FFGs) were found to be predators. Habitat orientation groups (HOGs) were found to be swimmers. In OHC (Odonata, Hemiptera, and Coleoptera) group, 17 species (73.91%) in 2021, 23 species (79.31%) in 2016, 26 species (86.67%) in 2018, and 19 species (79.17%) in 2019 were identified. Cybister japonicus, an endangered species II, was confirmed to inhabit Muljangori-oreum wetland in the literature. Ten individuals (2.43%) were also confirmed to inhabit Muljangori-oreum wetland in 2021. Therefore, continuous management and habitat protection are required to maintain the habitat environment of C. japonicus in Muljangori-oreum wetland.

Temporal Variations in the Sedimentation Rate and Benthic Environment of Intertidal Surface Sediments around Byeonsan Peninsula, Korea (변산반도 조간대 표층 퇴적물의 퇴적률 및 저서환경 변화)

  • Jung, Rae-Hong;Hwang, Dong-Woon;Kim, Young-Gil;Koh, Byoung-Seol;Song, Jae-Hee;Choi, Hee-Gu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.6
    • /
    • pp.723-734
    • /
    • 2010
  • To understand temporal variations in geochemical characteristics of intertidal surface sediments around Byeonsan Peninsula (in the middle of the western coast, Korea) after the construction of Saemanguem dyke, the sedimentation rate and various geochemical parameters, including mean grain size (Mz), water content (WC), ignition loss (IL), chemical oxygen demand (COD), and acid volatile sulfide (AVS), were measured along four transects (A.D lines) at monthly intervals from February 2008 to March 2009. The average monthly sedimentation rate ranged from -5.3 to 3.8 mm/month (mean $-0.8{\pm}2.7\;mm$/month), which showed an erosion-dominated environment in the lower part of the intertidal zone. In addition, surface sediments were eroded in summer and autumn, but were deposited in spring and winter. The Mz of surface sediments ranged from -0.8 to $3.4{\varnothing}$ (mean $2.8{\pm}0.5{\varnothing}$), indicating that the surface sediments consist of coarser sediments (sand and slightly gravelly sand). The Mz of surface sediments did not show large monthly and/or seasonal variations, although the sedimentation rates of surface sediment showed large seasonal variation. This may be due to lateral shifting and effective dispersion of surface sediments by wind, tide, and longshore current. The concentrations of IL and COD in the surface sediments ranged from 0.2 to 2.9% (mean $1.4{\pm}0.4%$) and from 0.2 to $18.5\;mgO_2$/g-dry (mean $3.9{\pm}3.4\;mgO_2$/g-dry), respectively, which were slightly higher in spring than in the other seasons. This may be related to spring blooms of phytoplankton in seawater and/or benthic microalgae in surface sediments. On the other hand, no AVS concentrations were detected in surface sediments at any of the sampling stations during the study period.

Environmental Impacts of Brine from the Seawater Desalination Plants (해수담수화 시설에서 생성된 농축수의 환경적 영향)

  • Park, Seonyoung;Seo, Jinsung;Kim, Taeyun
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.1
    • /
    • pp.17-32
    • /
    • 2018
  • The need for seawater desalination is increasing in terms of securing various water resources, but few studies are available as for the environmental impact of hypersaline concentrated water (brine) discharged from desalination plants. Domestic studies are concentrated mainly on toxicity evaluation that phytoplankton, zooplankton larvae and green algae (Ulva pertusa) are negatively affected by concentrated water. The mortality of Paralichthys olivaceus showed a linear relationship with increasing salinity, and Oryzias latipes died 100% at concentrations above 60 psu. Foreign studies included monitoring cases as well as toxicity evaluations. The number of species decreased around the area where the concentrated water discharged. The hypersaline concentrated water affects the pelagic and benthic organisms. However, the fishes escaped when exposed to salinity, and the pelagic and benthic organisms resistant to salinity survived the hypersaline environment. The salinity limit and distance from the outlet was presented as the regulatory standard for bine discharge. There were differences in regulatory standards among country and seawater desalination plants, and these regulatory standards have been strengthened recently. In particular, California Water Boards were revised to ensure that the maximum daily salinity concentration does not exceed 2 psu above the ambient salinity level within 100 m of the outlet.