• 제목/요약/키워드: bending-carrying capacity

검색결과 113건 처리시간 0.03초

Cracking and bending strength evaluations of steel-concrete double composite girder under negative bending action

  • Xu, Chen;Zhang, Boyu;Liu, Siwei;Su, Qingtian
    • Steel and Composite Structures
    • /
    • 제35권3호
    • /
    • pp.371-384
    • /
    • 2020
  • The steel-concrete double composite girder in the negative flexural region combines an additional concrete slab to the steel bottom flange to prevent the local steel buckling, however, the additional concrete slab may lower down the neutral axis of the composite section, which is a sensitive factor to the tensile stress restraint on the concrete deck. This is actually of great importance to the structural rationality and durability, but has not been investigated in detail yet. In this case, a series of 5.5 m-long composite girder specimens were tested by negative bending, among which the bottom slab configuration and the longitudinal reinforcement ratio in the concrete deck were the parameters. Furthermore, an analytical study concerning about the influence of bottom concrete slab thickness on the cracking and sectional bending-carrying capacity were carried out. The test results showed that the additional concrete at the bottom improved the composite sectional bending stiffness and bending-carrying capacity, whereas its effect on the concrete crack distribution was not obvious. According to the analytical study, the additional concrete slab at the bottom with an equivalent thickness to the concrete deck slab may provide the best contributions to the improvements of crack initiation bending moment and the sectional bending-carrying capacity. This can be applied for the design practice.

Bending Behavior of Nailed-Jointed Cross-Laminated Timber Loaded Perpendicular to Plane

  • Pang, Sung-Jun;Kim, Kwang-Mo;Park, Sun-Hyang;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권6호
    • /
    • pp.728-736
    • /
    • 2017
  • In this study, the bending behavior of cross-laminated timber (CLT) connected by nails were investigated. Especially, the load-carrying capacity of the nail-jointed CLT under out-of-plane bending was predicted by the lateral resistance of the used nails. Three-layer nail-jointed CLT specimens and a nail connection were manufactured by 30 mm (thickness) ${\times}$ 100 mm (width) domestic species (Pinus koraiensis) laminas and Ø$3.15{\times}82mm$ nails using a nail-gun. Shear test for evaluating the nail lateral resistance and bending test for evaluating the load-carrying capacity of the nail-jointed CLT under out-of-plane bending were carried out. As a result, two lateral resistance of the used nail, the 5% fastener offset value and the maximum value, were 913 N and 1,534 N, respectively. The predicted load-carrying capacity of the nail-jointed CLT by the 5% offset nail lateral resistance was similar to the yield points on the actual load-displacement curve of the nail-jointed CLT specimens. Meanwhile, the nail-jointed CLT specimens were not failed until the tension failure of the bottom laminas occurred beyond the maximum lateral resistance of the nails. Thus, the measured maximum load carrying capacities of the nail-jointed CLT specimens, approximately 12,865 N, were higher than the predicted values, 7,986 N, by the maximum nail lateral resistance. This indicates that the predicted load-carrying capacity can be used for designing a structural unit such as floor, wall and roof able to support vertical loads in a viewpoint of predicting the actual capacities more safely.

Assessment of Safety and Load Carrying Capacity of Aged Jacket-Typed Dolphin by Ship-Impact Test (선박접안시험을 통한 자켓식 돌핀부두의 내하력 평가 방법 연구)

  • Jo, Byung-Wan;Kwon, Oh-Hyuk
    • Journal of Ocean Engineering and Technology
    • /
    • 제12권3호통권29호
    • /
    • pp.9-18
    • /
    • 1998
  • An improved evaluation method of load-carrying capacity for the large-scaled offshore structures, which subjected to the axial force and bending moments simultaneously at the piles, was suggested with reliability analysis and advanced working stress method. Reliability analysis requires the fracture probability and safety factor(${beta}$) for each of forces and the load-carrying capacity due to combined action of axial force and bending moments from $P_n - {beta}$ Curve. The combined equation due to those forces, which suggested by the Korean Specification for the marine structure, was derived for the advanced working stress method and applied to evaluate the load-carrying capacity of jacket-type dolphin piers.

  • PDF

Estimation of Shear Carrying Capacity on Concrete Beams, Reinforced with FRP Rods (FRP Rods로 보강한 콘크리트 보의 전단 내하력의 평가)

  • 최익창;연준희;고재용
    • Journal of Ocean Engineering and Technology
    • /
    • 제18권1호
    • /
    • pp.63-68
    • /
    • 2004
  • The purpose of this study is to estimate the contribution of concrete and shear reinforcement, in shear carrying capacity, on concrete beams, reinforced with steel and/or FRP rods. The experimental tests for 12 concrete beams, reinforced with steel and/or FRP rods, are carried out. Experimental parameters includes the mechanical properties of reinforcements in shear and bending, and the ratio of shear reinforcement. This study compares the experimental results of shear carrying capacity in concrete beams, reinforced with steel and/or FRP rods, with the proposed equations. According to the experimental results, the effect of the concrete in concrete beams reinforced with FRP rods is decreased with decreasing Young's modulus of longitudinal tensile reinforcement. This results from the large deflection of concrete beams reinforced with decreasing Young's modulus of longitudinal tensile reinforcement. Also, the contribution of shear reinforcement is smaller than the calculated value, using the truss analogy. This results from the fact that the stress redistribution is not exhibited after the break of shear reinforcement.

Evaluation of the Load Carrying Capacity of Existing Bridges Using Buckling Equation With Initial Deflection (초기처짐을 갖는 좌굴방정식을 이용한 교량의 내하력 평가)

  • Ki, Wan-Seo;Yang, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제10권8호
    • /
    • pp.2032-2037
    • /
    • 2009
  • The load carrying capacity of bridge structures in public use is generally evaluated without considering their actual behavioral characteristics. This study examined common errors taking place in the evaluation of load carrying capacity of bridge structures. In order to account for their current behavioral characteristics such as the boundary condition, we evaluated the load carrying capacity of a bridge in terms of axial force, which was calculated by applying deflection to the buckling equation for members with initial imperfections, and in terms of bending moment obtained from deflection.

Load carrying capacity Evaluation Considering the Structural Characteristics of Bridge Bearing (교량받침의 거동특성을 고려한 내하력 평가)

  • Park, Kil-Hyun;Yang, Seung-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제7권4호
    • /
    • pp.209-216
    • /
    • 2003
  • Load carrying capacity evaluation is very important element in maintenance of bridge. There are several reasons about differences in deflection caused by loading test and structural analysis. Especially when we do modeling uniformly without considering real structural characteristics of support, this problem can be more deepened. This computes modification factor high so we may evaluate the load carrying capacity more than fact. In this study, we do structural analysis nearing real structure with negative bending moment of support that computes considering structural characteristics of support, and then evaluate load carrying capacity.

Load Carrying Capacity Assessment of Bridges with Elastic Supports Application (탄성지점의 적용에 따른 교량의 내하력평가)

  • Yang, Seung-Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • 제24권5호
    • /
    • pp.595-603
    • /
    • 2012
  • This study applied elastic supports in order to evaluate load carrying capacity using measurement data obtained from load tests actively and utilizing various evaluation methods. In order to confirm the adequacy of structural analysis based on elastic supports and to improve the reliability of experiment results, we conducted a deflection test with flexural beams prepared as overhanging beams and, based on the results, performed precision safety diagnosis for real bridges under public service for improving the load carrying capacity evaluation method for bridges under public service. In the results of the bending test, compared to deflection calculated by the existing method, deflection obtained by applying elastic supports was closer to the actually measured deflection. In the results of evaluating load carrying capacity for a 3 span continuous steel box girder bridge just after its completion, load carrying capacity by elastic supports was smaller by up to 39% than that by the existing method. When the load carrying capacity of bridges is evaluated by the existing method the results vary among engineers due to lack of guidelines for evaluation such as the application of stress modification factor. This study was conducted as an effort to solve this problem through active research.

Development of a Separable Glued-Laminated Timber (GLT)-Steel Beam for Eco-Friendly Construction and Dismantling of Buildings (건축물의 친환경 시공·해체를 위한 재료 분리형 GLT-Steel 보 개발)

  • Pang, Sung-Jun;Oh, Jung-Kwon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.23-24
    • /
    • 2023
  • In this study, an easily recyclable separable glued-laminated timber (GLT)-steel beam was developed, and a structural design method was presented. The GLT and steel were mechanically composited using self-tapping screws. The GLT-steel beam was designed to fail in the compression of GLT. The bending moment and load-carrying capacity of the GLT-steel beam were predicted based on composite beam theory and compared with experimental test data. As a result, the GLT-steel beam exhibited ductile behavior, and compression failure of GLT was observed. The screw connection showed no damage while the steel plate was extended. The load-carrying capacity of GLT after failure was similar to the load resistance predicted by the compressive strength of GLT and the tensile strength of steel. This indicates that the ductile behavior of the GLT-steel beam can be safely designed by the tensile strength (yield) of steel.

  • PDF

Theoretical and experimental study on load-carrying capacity of combined members consisted of inner and sleeved tubes

  • Hu, Bo;Gao, Boqing;Zhan, Shulin;Zhang, Cheng
    • Structural Engineering and Mechanics
    • /
    • 제45권1호
    • /
    • pp.129-144
    • /
    • 2013
  • Load-carrying capacity of combined members consisted of inner and sleeved tubes subjected to axial compression was investigated in this paper. Considering the initial bending of the inner tube and perfect elasto-plasticity material model, structural behavior of the sleeved member was analyzed by theoretic deduction, which could be divided into three states: the elastic inner tube contacts the outer sleeved tube, only the inner tube becomes plastic and both the inner and outer sleeved tubes become plastic. Curves between axial compressive loads and lateral displacements of the middle sections of the inner tubes were obtained. Then four sleeved members were analyzed through FEM, and the numerical results were consistent with the theoretic formulas. Finally, experiments of full-scale sleeved members were performed. The results obtained from the theoretical analysis were verified against experimental results. The compressive load-lateral displacement curves from the theoretical analysis and the tests are similar and well indicate the point when the inner tube contacts the sleeved tube. Load-carrying capacity of the inner tube can be improved due to the sleeved tube. This paper provides theoretical basis for application of the sleeved members in reinforcement engineering.

Rotational capacity of H-shaped steel beams under cyclic pure bending

  • Jia, Liang-Jiu;Tian, Yafeng;Zhao, Xianzhong;Tian, Siyuan
    • Steel and Composite Structures
    • /
    • 제30권2호
    • /
    • pp.123-140
    • /
    • 2019
  • This paper presents experimental study on effects of width-to-thickness ratio and loading history on cyclic rotational capacity of H-shaped steel beams subjected to pure bending. Eight Class 3 and 4 H-shaped beams with large width-to-thickness ratios were tested under four different loading histories. The coupling effect of local buckling and cracking on cyclic rotational capacity of the specimens was investigated. It was found that loss of the load-carrying capacity was mainly induced by local buckling, and ductile cracking was a secondary factor. The width-to-thickness ratio plays a dominant effect on the cyclic rotational capacity, and the loading history also plays an important role. The cyclic rotational capacity can decrease significantly due to premature elasto-plastic local buckling induced by a number of preceding plastic reversals with relative small strain amplitudes. This result is mainly correlated with the decreasing tangent modulus of the structural steel under cyclic plastic loading. In addition, a theoretical approach to evaluate the cyclic rotational capacity of H-shaped beams with different width-to-thickness ratios was also proposed, which compares well with the experimental results.