• Title/Summary/Keyword: bending time

Search Result 932, Processing Time 0.026 seconds

Effects of Heating Temperature and Time on the Mechanical Properties of Heat-Treated Woods

  • Won, Kyung-Rok;Hong, Nam-Euy;Park, Han-Min;Moon, Sun-Ok;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.168-176
    • /
    • 2015
  • This study was performed to investigate the effects of heat treatment the on mechanical properties of two species of wood under different heating conditions including at $180^{\circ}C$ for 12 h and 24 h, and at $210^{\circ}C$ for 3 h and 6 h. Two species of wood, Pinus densiflora and Larix kaempferi, were exposed to different heat treatments to assess the effects on the volume change, bending properties in static and dynamic mode and compressive strength. The results showed heat treatment caused significant changes in mechanical properties such as the static and dynamic moduli of elasticity ($MOE_d$ and $MOE_s$), and the modulus of rupture (MOR). The volume of the wood after heat treatment decreased as the heating temperature and time were increased. The bending strength performance of the wood after heat treatment decreased as the heating temperature and time were increased. The effect of heat treatment at a high temperature on the bending MOR was greater in both species than that for a long time. However, the compressive strengths of all the heat-treated samples were higher than the control sample. Furthermore, highly significant correlations between $MOE_d$ and MOR, and $MOE_s$ and MOR were found for all heating conditions.

Time-Dependent Spring-back Prediction of Aluminum Alloy 6022-T4 Sheets Using Time-Dependent Constitutive law (시간 의존성 구성방정식을 이용한 AA6022-T4 판재의 탄성 복원 예측)

  • Park, T.;Ryou, R.;Lee, M.G.;Chung, K.H.;Wagoner, R.H.;Chung, K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.330-333
    • /
    • 2009
  • The time-dependent constitutive law was developed based on viscoelastic-plasticity to describe the time-dependent spring-back behavior of aluminum alloy 6022-T4 sheets. Besides nonlinear viscoelasticity, non-quadratic anisotropic yield function, Yld2000-2d, was used to account for the anisotropic yield behavior, while the combined isotropic-kinematic hardening law was used to represent the Bauschinger effect and transient hardening. For verification purposes, finite element simulations were performed for the draw-bending and the results were compared with experimental results.

  • PDF

Distortion Control of the Curved Panel Using Elastic Bending Method

  • Kim H. G.;Shin S. B.;Youn J. G.
    • International Journal of Korean Welding Society
    • /
    • v.5 no.1
    • /
    • pp.29-34
    • /
    • 2005
  • Finite element analysis (FEA) and experimental studies on an elastic bending method have been performed in order to control the angular distortion at the fillet weldment for curved panel. Process parameters for the elastic bending method such as clamping span and release time were analyzed with reference to welding condition and geometric effect of the curved panel, which can minimize or prevent the angular distortion by producing a proper skin stress to the fillet weldment. The amounts of the angular distortion decrease almost in a linear manner with an increase in the skin stress. The skin stress required for non-angular distortion at the fillet weldment is strongly dependent on the plate thickness, not the heat intensity applied. The clamping span for obtaining uniform skin stress was defined as functions of the plate thickness and length of the free edge. Clamp should be removed after the fillet weldment is cooled down to room temperature for non-angular distortion. Effectiveness of the elastic bending method established was verified by its application to an actual curved panel.

  • PDF

Effect of Thermal Cycle on Strength of Ceramic and Metal Joint (세라믹/금속접합재의 강도에 미치는 열사이클 영향)

  • 박영철;오세욱;김광영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1664-1673
    • /
    • 1994
  • As a fundamental study on effects of thermal-cycles on residual stress of ceramics/metal joints, residual stresses in $Si_3N_4$/SUS304 joint specimens were measured before and single thermal-cycle by X-ray diffraction method and finite element method(FEM). The residual stress was found to increase after single thermal-cycle, which was agreeable with the results of residual stress measurement by X-ray diffraction method and residual stress analysis by finite element method. After the residual stress measurement, 4-point bending tests were performed. The relationship between the bending strength, the thermal-cycle temperature and hold time was examined. The bending strength was found to decrease with the increase of residual stress in linear relation.

Finite Element Analysis on the Springback in the Forging-Bending of Metal Micro-Wire (금속 마이크로 와이어의 단조-굽힘 성형에서 스프링백에 관한 해석적 연구)

  • Kang, J.J.;Hong, S.K.;Jeon, B.H.;Pyo, C.R.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.649-656
    • /
    • 2008
  • Springback is one of factors affecting precision in metal forming. Its effect is particularly prominent in bending process. In this study, bending and forging process are used in order to manufacture a micro spring with two bending region from $60{\mu}m$ diameter wire. Springback in the process lowers the precision of the micro spring. Overbending for springback compensation has wide usage in a general way. However, this method requires repeated modifications of press dies until the tolerance is allowable, which causes that production cost and time increase. In this paper, we analyzed the mechanism of springback in the forming process of the micro spring using finite element method. In addition, a simple method to control springback without modifying dies was proposed by performing numerical analysis with various parameters.

Bending strength of alumina coated with bioglass and soda lime glass and the precipitation on the surface of coated alumina in PBS (생체 유리와 소다 유리침투에 따른 알루미나 세라믹의 굴곡 강도 및 PBS에서의 표면 생성물 연구)

  • Yuu, Jae-Yang
    • Journal of Technologic Dentistry
    • /
    • v.30 no.2
    • /
    • pp.39-45
    • /
    • 2008
  • Titanium and its alloys are widely used as dental implants materials because of their excellent mechanical properties. However, the alumina and zirconia ceramics are preferred to use as the substitute of Ti implants because there is a problems in esthetics and biocompatibility in Ti implant. The the glass infiltrated alumina ceramics are studied to increase the toughness and biocompatibility. The 45S5 and soda-lime glass powder was mixed with ethanol at ratio of 1:1 and brushed on the surface of alumina. Then it was heat treated in the electric furnace at $1400^{\circ}C$ from 30 min. to 5 hours. The glass powder was controlled from 200 to $350{\mu}m$ using ball milling. After heat treatment, the glass infiltrated specimen was tested in universal testing machine to measure the bending strength. The surface microstructure of each specimen was observed with SEM. The biocompatibility of 45S5 and soda-lime glass coated alumina was investigated using PBS at $36.5^{\circ}C$ incubator. The specimen was immersed in PBS for 3, 5, 7, 10 days. After that, the surface morphology was investigated with SEM. As the results of experiment, the 45S5 bioglass infiltrated alumina show the increase of bending strength according to the increasing of heat treatment time from 30 min. to 5 hours at $1400^{\circ}C$ Finally the 1370N bending strength of alumina increased to 1958N at 5 hours heat treatment, which shows 1.4 times higher. In contrast to this, the soda lime glass infiltrated alumina ceramics shows the convex curve according to heat treatment time. Thus it shows maximum bending strength of 1820N at 1 hour heat treatment of $1400^{\circ}C$ It gives 1.3 times higher. However, the bending strength of soda lime glass infiltrated alumina is decreasing with increasing heat treatment time after 1 hour. The precipitation on the surface of 45S5 glass infiltrated alumina was revealed as a sodium phosphate ($Na_{6}P_{6}O_{24}6H_{2}O$) and the amount of precipitation is increasing with increasing of immersion time in PBS. In contrast to this, there is no precipitation are observed on the surface of soda lime glass infiltrated alumina. This implies that 45S5 glass infiltrated alumina brings more biocompatible when it is implanted in human body.

  • PDF

Methodologies for numerical modelling of prestressed concrete box-girder for long term deflection

  • Lalanthi, M.C.;Kamatchi, P.;Balaji Rao, K.;Saibabu, S.
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.269-278
    • /
    • 2018
  • In this paper, two methods M1 and M2 to determine long-term deflection through finite element analyses including the effect of creep and relaxation are proposed and demonstrated for a PSC box-girder. In both the methods, the effect of creep is accounted by different models from international standards viz., ACI-209R-92, CEB MC 90-99, B3 and GL2000. In M1, prestress losses due to creep and relaxation and age adjusted effective modulus are estimated through different models and have been used in finite element (FE) analyses for individual time steps. In M2, effects of creep and relaxation are implemented through the features of FE program and the time dependent analyses are carried out in single step. Variations in time-dependent strains, prestress losses, stresses and deflections of the PSC box-girder bridge through M1 and M2 are studied. For the PSC girder camber obtained from both M1 and M2 are lesser than simple bending theory based calculations, this shows that the camber is overestimated by simple bending theory which may lead to non-conservative design. It is also observed that stresses obtained from FEM for bottom fibre are lesser than the stresses obtained from bending theory at transfer for the PSC girder which may lead to non-conservative estimates.

Effects of Heat-treatment on Crystallization and Mechanical Properties of Glass ceramics for Dental crown prosthesis in the system $CaO-MgO-SiO_{2}-P_{2}O_{5}-TiO_2$ (치관보철용 $CaO-MgO-SiO_{2}-P_{2}O_{5}-TiO_2$계 글라스 세라믹의 결정화와 기계적 물성에 미치는 열처리 조건의 영향)

  • Chung, In-Sung;Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.26 no.1
    • /
    • pp.77-88
    • /
    • 2004
  • Glass ceramics for dental crown prosthesis were prepared by crystallization of CaO-MgO-SiO2-P2O5-TiO2 glasses. Their crystallization behaviors have been investigated as a function of heattreatment temperature and holding time in relation to mechanical properties. The results are as follows: Vickers hardness and bending strength of glass ceramics increased due to the precipitation of apatite, whitlockite, $\beta$-wollastonite, magnesium titanate, and diopside crystal phases within glass matrix. The final crystalline phase assemblages and the microstructures of the glass ceramics were found to be dependent on heat-treatment temperature and holding time. Vickers hardnes and bending strength of glass ceramics increased with increasing heat-treatment temperature and holding time.

  • PDF

Effect of HTT on Bending and Tensile Properties of 2D C/C Composites

  • Dhakate, S.R.;Aoki, T.;Ogasawara, T.
    • Carbon letters
    • /
    • v.6 no.4
    • /
    • pp.234-242
    • /
    • 2005
  • Bending and tensile properties of 2D cross-ply C/C composites with processing heat treatment temperature (HTT) are evaluated. C/C composites used are made from two types of PAN based T700 and M40 carbon fibers with phenolic resin as carbon matrix precursor. Both the types of composites are heat treated at different temperatures (ranging from 750 to $2800^{\circ}C$) and characterized for bending and tensile properties. It is observed that, real density and open porosity increases with HTT, however, bulk density does show remarkable change. The real density and open porosity are higher in case T-700 carbon fiber composites at $2800^{\circ}C$, even though the density of M40 carbon fiber is higher. Bending strength is considerably greater than tensile strength through out the processing HTT due to the different mode of fracture. The bending and tensile strength decreases in both composites on $1000^{\circ}C$ which attributed to decrease in bulk density, thereafter with increase in HTT, bending and tensile strength increases. The maximum strength is in T700 fiber based composites at HTT $1500^{\circ}C$ and in M40 fiber based composites at HTT $2500^{\circ}C$. After attending the maximum value of strength in both types of composite at deflection HTT, after that strength decreases continuously. Decrease in strength is due to the degradation of fiber properties and in-situ fiber damages in the composite. The maximum carbon fiber strength realization in C/C composites is possible at a temperature that is same of fiber HTT. It has been found first time that the bending strength more or less 1.55 times higher in T700 fiber composites and in M40 fiber composites bending strength is 1.2 times higher than that of tensile strength of C/C composites.

  • PDF

Effect of the Moisture Environment on the Mechanical Properties of Carbon Fiber Laminates (적층형 탄소섬유 복합재료의 기계적 성질에 미치는 수분환경의 영향)

  • Kim, Won-Keun;Moon, Chang-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.63-74
    • /
    • 1999
  • This study has been investigated about the influence of moisture environment on the mechanical properties in the carbon fiber cross laminates. And it has been also investigated the effect of unit ply thickness of the carbon fiber cross laminates on the mechanical properties in distilled water of $80^{\circ}C$ for a certain period of time. As a results, it was found that the weight gain of water was increased with the immersion time and the bending strength and fracture toughness were decreased with the weight gain of water. And it was also shown that the bending strength and fracture toughness were decreased with the increasing of the unit ply thickness of carbon fiber cross laminates through the immersion time.

  • PDF