• Title/Summary/Keyword: bending modulus of rupture

Search Result 77, Processing Time 0.023 seconds

Effect of Heat Treatment on the Bending Strength and Hardness of Wood

  • Won, Kyung-Rok;Kim, Tae-Hong;Hwang, Kyo-Kil;Chong, Song-Ho;Hong, Nam-Euy;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.303-310
    • /
    • 2012
  • Heat treatment improves dimensional stability and sound absorption properties of wood. However, mechanical properties of wood can be deteriorated during the heat treatment. The effect of heat treatment on the bending strength and hardness of wood for Korean paulownia, Pinus densiflora, Lidiodendron tulipifera and Betula costata were measured. The heat treatment temperature has been investigated at $175^{\circ}C$ and $200^{\circ}C$, respectively. The results showed that the weight and density of wood decreased after heat treatment. It was found that the density by heat treatment was lower at $200^{\circ}C$ than that at $175^{\circ}C$. And, MOE increased with the reduced density. On the contrary, MOR and hardness decreased. In all conditions, It was found that there was a high correlation of 1% level between bending modulus of elasticity and modulus of rupture.

Effects of the Wire Net Composition on Flexural Properties of Sawdustboard (철강구성(鐵鋼構成)이 톱밥보오드의 휨성질(性質)에 미치는 영향(影響))

  • Lee, Phil-Woo;Suh, Jin-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.67-72
    • /
    • 1985
  • To improve the bending strength of sawdustboard, verious resin contents of 10, 13, 16, and 19% were applied to the thin shell (face layer) composed with wire net or not. The shell effect of sawdust and wire net composition formed with core sawdustboard were evaluated. Forcusing on the effects of wire net composition and noncomposition including a comparison with chipboard and veneer complyboard, bending properties (Modulus of rupture (MOR), Modulus of elasticity (MOE), Stress at proportional limit ($S_{pl}$). Work to maximum load ($W_{ml}$))were analyzed and discussed. 1. In modulus of rutpute, veneer comply was the highest (621.5 kg/$cm^2$), and next decreasing order was wire net composition (159.1 kg/$cm^2$), chipboard (81.75 kg/$cm^2$), and wire net noncomposition (76.21 kg/$cm^2$) as in modulus of elasticity, work to maximum load, except for stress at proportional limit. 2. The highly significant effects were shown in both wire net composition and noncomposition, at the same time wire net composition exceeded two times of noncomposition throughout resin contents in bending properties. Chipboard was similar to the mean or 16% resin content in noncomposirion. 3. Every board in wire net composition above 10% resin content was beyond 100 kg/$cm^2$ in MOR, minimum allowable strength for structural use according to KS F 3104. In conclusion, the feasibility for improving the bending strength of weak sawdustboard by wire net composed shell was offered.

  • PDF

Effect of Density and Mixing Ratio of Mandarin Peels on The Bending Performance of Sawdust-Mandarin Peels Particleboards (톱밥-귤박 파티클보드의 역학적 성능에 미치는 밀도와 귤박첨가율의 영향)

  • Jin, Taiquan;Kang, Chun-Won;Oh, Seung-Won;Hwang, Jung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.364-373
    • /
    • 2015
  • This study was carried out to estimate the effects of density and mixing ratio of mandarin peels on the bending performances of the sawdust-mandarin peels particle boards. The board density influenced significantly to the bending performance of boards. Dynamic modulus of elasticity (dMOE) and static modulus of elasticity (sMOE) and modulus of rupture (MOR) of particle boards decreased with an increase in the mixing ratio of mandarin peels at the board densities of $0.4g/cm^3$ and $0.5g/cm^3$. High correlations were found between the dMOE and sMOE, and dMOE and MOR of particle boards prepared. Therefore, it was concluded that the dMOE obtained by free vibration test using resonance frequency could be used for predicting the sMOE and MOR of sawdust-mandarin peels particle boards.

Effect of Heat Treatment on the Dimensional Stability and the Bending Properties of Radiata Pine Sapwood

  • Yun, Ki-Eon;Kim, Gyu-Hyeok;Kim, Jae-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.30-37
    • /
    • 1999
  • The effects of heat treatment on the dimensional stability and bending properties of radiata pine sapwood were investigated. The dimensional stability was almost achieved by heat treatment though the loss of strength was accompanied as a negative effect. The improvement in dimensional stability of wood and the resultant reduction in bending properties were closely related to treatment temperature and duration. The optimum treatment conditions, which could be used to achieve a desired improvement in dimensional stability with resultant losses in modulus of rupture were proposed based on the results obtained in this study.

  • PDF

Evaluation of Exterior Durability of Domestic Plywood for Temporary Construction (국산(國産) 가설재용(假說材用) 합판(合板)의 옥외(屋外) 내구성(耐久性) 평가(評價))

  • Kim, Gyu-Hyeok;Jo, Jae-Sung;Song, Ki-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.20-27
    • /
    • 1994
  • Water repellent preservative (WRP) treated and untreated, small-sized specimens prepared from semiwater resistant, water resistant, and tegofilm-overlaid plywood were exposed to outdoor weathering for one year. Exterior durability of specimens was evaluated on the basis of changes in dynamic modulus of elasticity, degree of delamination, modulus of elasticity, modulus of rupture, and glueline shear strength. Among untreated specimens, tegofilm-overlaid plywood showed the best outdoor durability, and durability between semiwater resistant and water resistant plywood was similar. Although WRP treatment increased the durability of all types of plywoods, the effect of treatment on the increase in durability for semi water resistant plywood was not distinct. Accordingly, it can be concluded that semi water resistant plywood, which is used for temporary construction such as concrete formwork in our country, can not be inadequate for exterior use, regardless of WRP treatment. The bending strength and glueline shear strength of untreated water resistant plywood measured after weathering for one year did not exceed the minimum value specified by Korean Standard (KS), thereby the outdoor use of water resistant plywood was not desirable without WRP treatment. Exterior durability between treated water resistant plywood and untreated tegofilm-overlaid plywood was very similar. This result suggests that if an exposed plywood surface is treated with WRP regularly water resistant plywood can be used for temporary construction. This suggestion, however, needs to be investigated. In summary, semiwater resistant plywood cannot be used for temporay construction regardless of WRP treatment. Water resistant plywood can be used only with WRP treatment. Comparing the cost of tegofilm-overlaid plywood to costs of water resistant plywood and WRP treatment, however, it can be concluded that use of tegofilm-overlaid plywood for temporay constrution is strongly suggested from the point of view of both outdoor durability and costs.

  • PDF

Determination of True Modulus of Elasticity and Modulus of Rigidity for Domestic Woods with Different Slenderness Ratios Using Nondestructive Tests (서로 다른 세장비에 대한 비파괴실험으로 국산재의 실질탄성계수와 전단탄성계수 결정)

  • Cha, Jae Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.36-42
    • /
    • 2015
  • This study examined true modulus of elasticity (MOE) and modulus of rigidity (G) for domestic woods with different slenderness ratios (L/D) using the static bending and stress wave tests. Bending properties of small clear wood specimen of three domestic wood species were determined at 12% moisture content. The results of this study indicated that both MOR and MOE of domestic woods were affected by the slenderness ratio. As the slenderness ratio increased, MOR and MOE increased. G and true MOE of domestic timber beams were obtained at different slenderness ratios by flexure test and stress wave test. The values reported here can be useful if these species woods are used for structural purposes. However, the reported values are only indicative and do not represent the true average of wood species due to the limited number of specimens tested.

Static Bending Performances of Cross-Laminated Wood Panels Made with Tropical and Temperate Woods

  • Byeon, Jin-Woong;Kim, Tae-Ho;Yang, Jae-Kyung;Byeon, Hee-Seop;Park, Han-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.726-734
    • /
    • 2018
  • In this study, for using effectively domestic (temperate) small and medium diameter logs as a wooden floorboard, cross-laminated wood panels were manufactured using domestic larch and tulip woods as a base material for teak and merbau wood flooring, and static bending strength performances were measured to investigate the applicability as the base materials of wooden flooring in place of plywood. Static bending MOE was much influenced by the strength performances of the top layer lamina than that of the laminae for base materials. Bending MOR showed the higher values in tulip wood that was hardwoods than in larch wood that was softwoods regardless of the strength performances of the top layer laminae, and it was found that the values were much influenced by the strength performances of the base materials used in the core and bottom layers. However these values were 1.4-2.5 times higher values than the bending strength of the wooden floorboards specified in KS, it was found that it can be sufficiently applied to the base materials of wooden floorboards in place of plywood.

Radial Variation in Selected Wood Properties of Indonesian Merkusii Pine

  • Darmawan, Wayan;Nandika, Dodi;Afaf, Britty Datin Hasna;Rahayu, Istie;Lumongga, Dumasari
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.323-337
    • /
    • 2018
  • Merkusii pine wood (Pinus merkusii) was extensively planted throughout Indonesia, where it is only indigenous in northern Sumatera, by the Dutch during colonial times. The demand for this wood species, especially in the domestic market, has increased notably, despite its limited durability regarding decay resistance. The purpose of this study was to investigate the occurrence of juvenile and mature wood on merkusii pine and to analyze its radial features from pith to bark based on density, shrinkage, static bending in modulus of rupture and modulus of elasticity, fiber length, microfibril angle, and durability. A segmented modeling approach was used to find the juvenile-mature transition. The graveyard test was performed to characterize the termite resistance from pith to bark of merkusii pine. The maturations were estimated to start at radial increments of 15 cm from the pith by fiber length and of 12 cm from the pith by microfibril angle. The projected figures for the proportion of juvenile wood at breast height were around 65%. The results also indicate that the pine wood was $0.52g/cm^3$ in density, 1.45 in coefficient of anisotropy, which indicates its good stability, 7597 MPa in modulus of elasticity, and 63 MPa in modulus of rupture. Natural durability against subterranean termite of the merkusii pine wood was rated to be grade 4 to 0 from pith to bark. However, after being treated by Entiblu and Enborer preservatives, its rating increased to grade 10 to 9.

The Effect of Finger Length on Bending Strength Properties in Laminated Wood (집성재의 정거길이가 휨강도성능에 미치는 영향)

  • 홍병화;변희섭;김종만
    • Journal of the Korea Furniture Society
    • /
    • v.11 no.2
    • /
    • pp.7-12
    • /
    • 2000
  • This paper describes the bending strength properties of laminated woods which had three kinds of specimens according to finger length-12, 4.5 mm and butt joint and the acoustic emissions (AEs) generated during the test. 3-ply laminated wood beams were tension side layers (lower layers) composed of one middle lamina and two side-jointed laminae, with one butt joint ($_1BJ$), one finger joint (12mm, $_1FJ_{12}$) or one finger joint (4.5mm, $_1FJ_{4.5}$) in the middle lamina of tension side layer. And 3-ply laminated wood beams were tension side layers (lower layers) also composed of one lamina, with one butt joint (BJ), one finger joint (12mm, $FJ_{12}$) or one finger joint (4.5mm, $FJ_{4.5}$/) in tension side layer. Cryptomelia pieces were cut for butt and two finger types and glued with resorcinol-phenol resin adhesive. The results were as follows It was not effective in the bending modulus of elasicity (MOE) with IFJL type and had no difference from finger length. The bending modulus of rupture (MOR) of laminated wood beams including finger joint was the same values as that including butt feint and had no difference from finger length. It was effective in MOE with FJL type and had no difference from finger length. The effect of finger joint on MOR was much higher than that of butt joint but had no difference from finger length. The AE generation time of IFJL type was earlier than that of the control wood and the number of AE count was much more than that of the control wood. However, the AE generation time of FJL type was earlier than that of the control wood and the number of U count was much fewer than that of the control wood.

  • PDF

Investigation on the Dimensional Stability of Acetylated Larch (Larix kaempferi) Small Square (아세틸화처리 낙엽송(Larix kaempferi) 소형 각재의 치수안정성 조사)

  • Lee, Won-Hee;Kang, Ho-Yang
    • Journal of the Korea Furniture Society
    • /
    • v.27 no.4
    • /
    • pp.302-308
    • /
    • 2016
  • It has been known that acetylation improves the dimensional stability of wood. Liquid phase acetylation is more popular than gas-phase acetylation for the effectiveness of weight gain of wood. In this study the specimens of domestic red and Korean pines are acetylated in liquid phase and their physical properties, such as density, bending strength, anti-hygroscopicity etc., are analyzed. Acetylation increases the average weights and volume of larch specimens by 11.4% and 3.4%, respectively, and their average oven-dry densities are increased by $0.03g/cm^3$. Acetylation does not influence on Modulus of Rupture (MOR) and Modulus of Elasticity (MOE). The average Percentage Reduction in Hygroscopicity (PRH) and average Percentage Reduction in Water soaking (PRW) of larch specimens are respectively 20.2% and 20.8%. Thus it can be concluded that acetylation improves the dimensional stability of larch specimens.