• 제목/요약/키워드: bending modulus of elasticity

검색결과 134건 처리시간 0.026초

석분과 플라이 애쉬를 혼입한 투수용 폴리머 콘크리트의 공학적 성질 (Engineering Properties of Permeable Polymer Concrete With Stone Dust and Fly Ash)

  • 성찬용;정현정
    • 한국농공학회지
    • /
    • 제38권4호
    • /
    • pp.147-154
    • /
    • 1996
  • This study wag performed to evaluate the engineering properties of permeable polymer concrete with stone dust and fly ash and unsaturated polyester resin. The following conclusions were drawn. 1. The highest strength was achieved by stone dust filled permeable polymer concrete, it was increased 17% by compressive strength, 188% by bending strength than that of the normal cement concrete, respectively. 2. The water permeability was in the range of 3.O76~4.152${\ell}/ cm{^2}/h$, and it was largely dependent upon the mix design. These concrete can be used to the structures which need water permeability. 3. The static modulus of elasticity was in the range of $1.15{\times} 10^5kg/cm^2$, which was approximately 53 56% of that of the normal cement concrete. 4. The poisson's number of permeable polymer concrete was in the range of 5.106~5.833, which was less than that of the normal cement concrete. 5. The dynamic modulus of elasticity was in the range of $1.29{\times} 10^5~1.5{\times} 10^5 kg/cm^2$, which was approximately less compared to that of the normal cement concrete. Stone dust filled permeable polymer concrete was showed higher dynamic modulus. The dynamic modulus of elasticity were increased approximately 7~13% than that of the static modulus. 6. The compressive strength, bending strength, elastic modulus, poisson's ratio, longitudinal strain and horizontal strain were decreased with the increase of poisson's number and water permeability at those concrete.

  • PDF

스피커 댐퍼의 실험적 분석 (Experimental Analysis of the Damper of a Loudspeaker)

  • 최도성;이성수
    • 한국음향학회지
    • /
    • 제23권3호
    • /
    • pp.192-196
    • /
    • 2004
  • 스피커 댐퍼의 재질에 따른 휨강도와 기하학적 요소인 주름의 반경 및 각 주름의 곡률반경으로 탄성계수를 결정하여 실험치와 비교하였다. 그 결과 댐퍼의 탄성은 휨강도에 비례하고 원형주름의 반경에는 반비례하며 주름의 곡률반경의 제곱에 반비례함을 알 수 있었다. 또, 댐퍼의 안쪽은 주름을 작게 만들고 바깥쪽은 주름을 크게 만든 변형 댐퍼로 스피커를 제작함으로서 고음부의 감도가 증가하면서도 저음부가 강화되는 소형 스피커를 만들 수 있었다.

여러 레진계 치아고정 재료의 굴곡강도 및 탄성계수 비교 (Comparison of flexural strength and modulus of elasticity in several resinous teeth splinting materials)

  • 유제인;김수연;;김진우;박세희;조경모
    • 구강회복응용과학지
    • /
    • 제32권3호
    • /
    • pp.169-175
    • /
    • 2016
  • 목적: 본 연구의 목적은 수종의 레진계 치아고정 재료의 굴곡강도와 탄성계수를 비교 분석하는 것이다. 연구 재료 및 방법: 레진계 치아고정 재료로 Super-Bond C&B (SB), G-FIX (GF), G-aenial Universal Flo (GU), Filtek Z350 XT (FZ)를 이용하여 각 군당 15개씩 총 60개의 시편을 제작하였다. 3점 굽힘 시험으로 측정된 값에 따라 굴곡강도와 탄성계수를 계산하였다. 실험값은 One-way ANOVA test로 분석하고, Scheffe's test로 사후 검정하였다. 결과: 본 연구의 결과 SB는 다른 재료들과 비교 시 가장 낮은 굴곡강도를 보였으며 GF, GU, FZ는 비슷하게 높은 굴곡강도를 보였다. 탄성계수의 경우 SB가 가장 낮은 값을 보였고 GF는 SB보다는 높지만 GU와 FZ보다는 낮은 탄성계수를 보였으며 GU와 FZ는 유의하게 높은 탄성계수를 보였다. 결론: 동요치 고정을 목적으로 새로 개발된 GU (G-FIX)는 유동성 복합 레진과 수복용 복합 레진과 같이 높은 강도를 보이며 잘 파절되지 않으면서도 상대적으로 유연한 성질을 보여 동요치 고정에 유리할 것으로 사료된다.

구기자 가지의 진동 특성 (Vibration Characteristics of Boxthorn(Lycium chinense Mill))

  • 서정덕
    • Journal of Biosystems Engineering
    • /
    • 제26권2호
    • /
    • pp.105-114
    • /
    • 2001
  • Modulus of elasticity, modulus of rigidity, damping ratio, and natural frequency of three varieties of boxthorn (Lycium chinense Mill) (Cheongyang #2, Cheongyang gugija, and Cheongyang native) branches were analyzed. Modulus of elasticity and modulus of elasticity and modulus of rigidity of the boxthorn branch was determined using standard formula after simple beam bending and torsion test, respectively, using an universal testing machine. Damping ratio and natural frequency of branches were determined using a system consisted of an accelerometer, a PC equipped with A/D converter, and a software for data analysis. Relationship between the elastic modulus and branch diameter in overall varieties and branch types showed a good correlation (r -0.81). There was, however, no correlation between torsional rigidity and branch diameter. The internal damping results were highly variable and the overall range of the damping ratio of the boxthorn branch was 0.014-0.087, which indicated that the branch was a lightly damped structure. The natural frequency of the boxthorn branch was in the range of 89-363 rad/s for the overall varieties and branch types. A good correlation (r 0.82) existed between the natural frequency and branch diameter in overall varieties and branch type.

  • PDF

삭편판과 단판 또는 합판을 구성 접착한 콤플라이 복합재에 관한 연구 (Studies on Comply-composites bonded with Particleboard and Veneer or Plywood)

  • 이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제18권4호
    • /
    • pp.86-101
    • /
    • 1990
  • The primary objective of this research was to investigate the strength properties of Comply, a composite panel. fabricated with particle board as core material and veneer or plywood as face and back. 20types of comply composites were manufactured according to the four specific gravity levels(0.5, 0.6, 0.7 or 0.8) of particleboard core and three veneer or two plywood thicknesses for face and back. They were tested and compared with matching particleboard (control) on moisture content. specific gravity, bending properties(MOE, MOR SPL). nail resistance and internal bond strength. The obtained results were summarized as follows: The increasing effect of modulus of elasticity was shown by the increase of face and back veneer or plywood thickness. The modulus of rupture and stress at proportional limit of the comply composites bonded with 3mm thick veneers or 3mm thick plywood face and back were higher than 2mm thick veneer or 2mm thick plywood as face and back. Both of modulus of rupture and stress at proportional limit on bending of Comply were higher than those of control board. Also the modulus of elasticity of Comply showed much higher than that of control board. The nail resistance of Comply, composed of plywood as face and back was higher than that of veneer. The nail resistance of control board was higher than that of Comply at Sp.Gr 0.7 and 0.8 core boards. Internal bond of Comply, composed of 1mm and 2mm thick veneer as face and back was higher than that of 3mm thick veneer. The increasing effect of modulus of elasticity was shown by the increase of shelling ratio in Comply composed of veneer and plywood as face and back. The modulus of rupture was increased by the increment of shellmg ratio in Compiy, composed of plywood as face and back. The modulus of elasticity and modulus of. rupture of comply were higher than those of particleboard(control) in effect of shelling ratio. Therefore it was concluded that the mechanical property values of Comply were clearly greater than those of particleboard(control).

  • PDF

Experimental Study of Bending and Bearing Strength of Parallel Strand Lumber (PSL) from Japanese Larch Veneer Strand

  • OH, Seichang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권4호
    • /
    • pp.237-245
    • /
    • 2022
  • This study examined the structural performance of experimental parallel strand lumber (PSL) from a Larch veneer strand. The prototype of PSL from a Larch veneer strand was manufactured in the experimental laboratory and tested. The bending and dowel bearing strength were determined from the modulus of elasticity (MOE), modulus of rupture (MOR), and dowel bearing strength based on a 5% offset yield load. The test results indicated that the average MOR of PSL was higher than that of 2 × 4 dimension lumber, and the average MOE of PSL was lower than that of 2 × 4 dimension lumber. A linear relationship was observed between the MOR and MOE. The allowable bending stress of PSL was derived as specified in ASTM D2915 and compared with other research. The dowel bearing strength of PSL in parallel to the grain was approximately double that perpendicular to the grain of PSL. A comparison of several theoretical calculations based on each national code for the dowel bearing strength was conducted, and some theoretical equations produced results closer to the experimental results when it was parallel to the grain, but the difference was higher in the case perpendicular to the grain. The test results showed that PSL made with Japanese larch veneer strands appeared to be suitable for a raw material of structural composite lumber (SCL) appeared to be used as a raw material for SCL.

Dynamic Property of Cross-Laminated Woods Made with Temperate Seven Species

  • GONG, Do-Min;SHIN, Moon-Gi;LEE, Soo-Hyun;BYEON, Hee-Seop;PARK, Han-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권5호
    • /
    • pp.504-513
    • /
    • 2021
  • In this study, cross-laminated wood panels were manufactured with four softwoods and three hardwoods with the goal of efficiently predicting the static strength performance using dynamic modulus of elasticity (MOE) and simultaneously revealing the dynamic performance of cross-laminated wood panels. The effect of the density of the species on the dynamic MOE of the laminated wood panels was investigated. Moreover, the static bending strength performance was predicted nondestructively through the correlation regression between the dynamic MOE and static bending strength performance. For the dynamic MOE, the parallel- and cross-laminated wood panels composed of oriental oak showed the highest value, whereas the laminated wood panels composed of Japanese cedar showed the lowest value. In all types of parallel- and cross-laminated wood panels, the density dependence was confirmed, and the extent of the density dependence was found to be greater in the P and C types with perpendicular-direction laminae in the faces than in the P and C types with longitudinal-direction laminae in the faces. Our findings confirmed that a high correlation exists at a significance level of 1% between the dynamic modulus and static bending modulus or bending strength in all types of laminated wood panels, and that the static bending strength performance can be predicted through the dynamic MOE.

서로 다른 세장비에 대한 비파괴실험으로 국산재의 실질탄성계수와 전단탄성계수 결정 (Determination of True Modulus of Elasticity and Modulus of Rigidity for Domestic Woods with Different Slenderness Ratios Using Nondestructive Tests)

  • 차재경
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권1호
    • /
    • pp.36-42
    • /
    • 2015
  • 국산재에 대한 전단탄성계수와 실질탄성계수를 구하기 위해 서로 다른 세장비에 대한 휨강도실험 및 응력파실험을 실시했다. 국산재의 휨 성질들은 12%로 조습 처리된 무결점 시편으로 측정하였다. 휨강도와 탄성계수는 세장비(L/D)에 영향을 받아 세장비가 증가하면 증가하였다. 전단탄성계수(G)와 실질탄성계수는 서로 다른 세장비에 대한 휨강도 실험 및 응력파실험의 결과를 이용하여 계산했고, 그 값들은 국산재가 구조용도로 사용된다면 유용할 것이다. 하지만 이들 결과들은 제한된 수의 시편들에 대한 값으로 이들 수종의 실질 평균값을 나타내진 않는다.

톱밥과 왕겨 및 숯을 이용하여 제조한 보드의 휨성능 (Bending Strength of Board Manufactured from Sawdust, Rice Husk and Charcoal)

  • HWANG, Jung-Woo;OH, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권4호
    • /
    • pp.315-327
    • /
    • 2021
  • 본 연구에서는 제재부산물인 톱밥과 농업부산물인 왕겨의 이용방안을 검토하고자 친환경재료인 숯을 첨가하여 밀도별, 혼합비율별로 혼합보드를 제조하고 휨성능을 조사하여 다음과 같은 결과를 얻었다. 톱밥과 왕겨 및 숯의 첨가율을 50:20:20, 수지첨가율을 10%로하여 밀도별로 제조한 혼합보드의 밀도가 0.5 g/cm3에서 0.7 g/cm3로 증가할수록 휨강도는 0.42~3.24 N/mm2, 동적탄성계수는 94.5~888.4 N/mm2 그리고 정적탄성계수는 31.4~220.7 N/mm2의 범위를 나타내, 밀도가 증가할수록 휨성능이 증가하여 밀도가 휨성능에 크게 영향을 끼쳤다. 밀도 0.6 g/cm3, 톱밥첨가율을 50%로 하고, 왕겨와 숯의 첨가율을 달리하여 제조한 보드에서 숯의 첨가율이 증가할수록 휨성능이 감소하는 경향을 나타냈다. 왕겨 및 숯의 첨가율과 휨강도, 공진주파수, 동적 및 정적 휨 탄성계수사이의 관계는 결정계수의 값(R2)은 각각 0.4562, 0.4310, 0.4589, 0.5847으로 다소 낮은 상관관계를 나타내 첨가율이 휨성능에 끼치는 영향은 적은 것을 알 수 있었다.

초기(初期) 갈색부후(褐色腐朽)에 따른 라디에타소나무의 역학적(力學的) 성질(性質) 감소(減少) (Reduction in Mechanical Properties of Radiata Pine Wood Associated with Incipient Brown-Rot Decay)

  • 김규혁;지우근;나종범
    • Journal of the Korean Wood Science and Technology
    • /
    • 제24권1호
    • /
    • pp.81-86
    • /
    • 1996
  • This study was performed to evaluate the reduction in bending properties of radiata pine sapwood associated with incipient brown-rot decay. Decayed bending specimens by Tyromyces palustris and Gloeophyllum trabeum for varoious periods were tested destructively. Brown-rot decay by T. palustris and G. trabeum caused serious reduction in bending properties at very early stages of decay, with about 30 percent decrease in bending strength observed for only 1~2 percent weight loss. In general, the reduction in bending properties caused by T. palustris was somewhat greater than that by G. trabeum. Work to maximum load was reduced most severely and rapidly from the onset of decay, while modulus of elasticity showed a much more moderate rate of reduction. Modulus of rupture was affected by decay to a greater extent than was modulus of elasticity. Since a relatively strong correlation between weight loss and bending strength was observed, the residual strength of decayed wood can be predicted by weight loss due to decay. The results of this study indicate that very early stages of brown-rot decay reduce the bending strength significantly. Thus, it is recommended that all load-bearing members in wooden structures, especially those that are periodically wetted, should be inspected regularly to prevent a sudden failure even though there are no definite signs of decay.

  • PDF