• 제목/요약/키워드: bending modulus of elasticity

검색결과 134건 처리시간 0.02초

Nondestructive Bending Strength Evaluation of Woodceramics Made from Woody Part of Broussonetia Kazinoki Sieb. - Effect of Resin Impregnation Ratio -

  • Byeon, Hee-Seop;Kim, Jae-Min;Won, Kyung-Rok;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권5호
    • /
    • pp.398-405
    • /
    • 2011
  • Nondestructive evaluation (NDE) technique method using a resonance frequency mode was carried out for woodceramics made by different phenol resin impregnation ratios (40, 50, 60, 70%) for Broussonetia Kazinoki Sieb. Dynamic modulus of elasticity increased with increasing resin impregnation ratios. There was a close relationship between dynamic modulus of elasticity and static bending modulus of elasticity and between dynamic modulus of elasticity and MOR and between static bending modulus of elasticity and MOR. Therefore, the dynamic modulus of elasticity using resonance frequency mode is useful as a nondestructive evaluation method for predicting the MOR of woodceramics made by different impregnation ratios.

응력파(應力波) 측정(測定)에 의(依)한 수종(數種)의 국산(國産) 침엽수재(針葉樹材) 및 열대(熱帶) 활엽수재(闊葉樹材)의 휨성질(性質) 평가(評價) (Evaluation of Static Bending Properties for Some Domestic Softwoods and Tropical Hardwoods Using Sonic Stress Wave Measurements)

  • 이도식;조재성;김규혁
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권1호
    • /
    • pp.8-14
    • /
    • 1997
  • Stress wave velocity, wave impedance, and stress wave elasticity of small, clear bending specimens of five domestic softwoods (Pinus densiflora, Pinus koraiensis, Chamaecyparis obtusa, Cryptomeria japonica, and Larix leptolepis) and four tropical hardwoods(Kempas, Malas, Taun, and Terminalia) were correlated with static bending modulus of elasticity(MOE) and modulus of rupture(MOR). The degree of correlation between stress wave parameters and static bending properties was dependent on wood species tested. Stress wave elasticity and wave impedance were better predictors for static bending properties than stress wave velocity for each species individually and for softwood or hardwood species taken as a group, even though elasticity and impedance were nearly equally correlated with static bending properties apparently. Based upon the correlation coefficient between stress wave parameters and static properties, stress wave elasticity and wave impedance were found as stress wave parameters which can be used for the purpose of the reliable and successful prediction of bending properties. The degree of correlation between static MOE and MOR was also different according to wood species tested. Static MOE was nearly as well correlated with MOR as was stress wave elasticity. The results of this research are encouraging and can be considered as a basis for further work using full-size lumber. From the results of this study, it was concluded that stress wave measurements could provide useful predictions of static bending properties and was a feasible method for machine stress grading of domestic softwoods and tropical hardwoods tested in this study.

  • PDF

Nondestructive Evaluation of Strength Performance for Heat-Treated Wood Using Impact Hammer & Transducer

  • Won, Kyung-Rok;Chong, Song-Ho;Hong, Nam-Euy;Kang, Sang-Uk;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권5호
    • /
    • pp.466-473
    • /
    • 2013
  • Nondestructive evaluation (NDE) technique method using a resonance frequency mode was carried out for heat-treated wood under different conditions. The effect of heat treatment on the bending strength and NDE technique using the resonance frequency by impact hammer and force transducer mode for Korean paulownia, Pinus densiflora, Lidiodendron tulipifera and Betula costata were measured. The heat treatment temperature has been investigated at $175^{\circ}C$ and $200^{\circ}C$, respectively. There were a close relationship of dynamic modulus of elasticity and static bending modulus of elasticity to MOR. In all conditions, It was found that there were a high correlation at 1% level between dynamic modulus of elasticity and MOR, and static modulus of elasticity and MOR. However, the result indicated that correlation coefficient is higher in dynamic modulus of elasticity to MOR than that in static modulus of elasticity to MOR. Therefore, the dynamic modulus of elasticity using resonance frequency by impact hammer mode is more useful as a nondestructive evaluation method for predicting the MOR of heat-treated wood under different temperature and species conditions.

Nondestructive Bending Strength Evaluation of Ceramics Made from Miscanthus sinensis var. purpurascens Particle Boards - Effect of Resin Impregnation Ratio -

  • Byeon, Hee-Seop;Won, Kyung-Rok;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권2호
    • /
    • pp.130-137
    • /
    • 2014
  • Nondestructive evaluation (NDE) method by using a resonance frequency mode was carried out for ceramics made from particle boards with different phenol resin impregnation ratios (30, 40, 50, 60%) at carbonizing temperature of $800^{\circ}C$. The material for ceramics was Miscanthus sinensis var. purpurascens board. Dynamic modulus of elasticity increased with increasing impregnation ratio. There was a close relationship of dynamic modulus of elasticity and static bending modulus of elasticity to modulus of rupture (MOR). However, the result indicated that correlation coefficient is higher in dynamic modulus of elasticity to MOR than that in static modulus of elasticity to MOR. Therefore, the dynamic modulus of elasticity using resonance frequency by free vibration mode is more useful as a nondestructive evaluation method for predicting the MOR of ceramics made from Miscanthus sinensis var. purpurascens particle boards by different phenol resin impregnation ratios.

왕겨숯과 톱밥을 이용하여 제조한 보드의 역학적 성능: 수지 및 톱밥첨가량의 영향 (Mechanical Performances of Boards Made from Carbonized Rice Husk and Sawdust: The Effect of Resin and Sawdust Addition Ratio)

  • HWANG, Jung-Woo;OH, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권5호
    • /
    • pp.696-709
    • /
    • 2020
  • 쌀의 도정과정에서 발생되는 농업부산물인 왕겨를 탄화시켜 만든 왕겨숯과 톱밥을 이용하여 수지 첨가율, 톱밥 첨가율별로 보드를 제조하고 수지와 톱밥 첨가율이 동적·정적탄성계수 및 휨강도에 미치는 영향과 동적탄성계수와 정적탄성계수 및 휨강도 사이의 관계를 조사하였다. 왕겨숯-톱밥 혼합보드의 페놀수지 첨가율이 10~25%로 증가할수록 휨성능이 증가하여 수지 첨가율이 휨성능에 크게 영향을 주었다. 톱밥 첨가율이 증가할수록 휨성능도 완만하게 증가하였지만, 톱밥첨가율과 휨강도, 동적 및 정적 휨 탄성계수 사이는 결정계수의 값(R2)은 0.4012, 0.0809, 0.1971로써 다소 낮은 상관관계를 나타내 톱밥 첨가율이 휨성능에 미치는 영향이 미비하였다. 왕겨숯-톱밥 혼합보드의 동적탄성계수와 정적탄성계수 및 휨강도 사이에 높은 상관관계가 확인되어 동적탄성계수로부터 비파괴적으로 정적탄성계수와 휨강도의 예측이 가능한 것으로 확인되었다.

균열이 발생된 콘크리트의 특성 및 보수.보강(구조 및 재료 \circled2) (Properties and Repair-Reinforcement of Concrete Introduced Crack)

  • 김영익;윤준노;민정기;김경태;박필우;성찬용
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2000년도 학술발표회 발표논문집
    • /
    • pp.284-289
    • /
    • 2000
  • This study is performed to evaluate an the crack properties and repair-reinforcement of concrete introduced crack. Materials used are portland cement, coarse aggregate, fine aggregate, unsaturated polyester resin and fly ash. Specimen is used beam of 76${\times}$76${\times}$412mm for measurement of pulse velocity, dynamic modulus of elasticity and bending strength and is introduced crack artificially. The following conclusions are drawn; Pulse velocity, dynamic modulus of elasticity and bending strength of concrete introduced crack is shown the lower 1.24∼11.91%, 3.42∼17.21% and 38.17∼61.0% than that of the control concrete, respectively. Pulse velocity, dynamic modulus of elasticity and bending strength of concrete repaired and reinforced crack is shown the higher 0.5∼2.60%, 1.57∼3.07% and 28.17∼47.25% than that of the concrete introduced crack and the lower than that of the control concrete, respectively.

  • PDF

탄화온도별로 제조된 거대억새 세라믹의 비파괴 휨강도 평가 (Nondestructive Bending Strength Evaluation of Miscanthus sinensis var. purpurascens Ceramics Made from Different Carbonizing Temperatures)

  • 원경록;오승원;변희섭
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권6호
    • /
    • pp.723-731
    • /
    • 2014
  • 공진주파수 모드를 이용하는 비파괴 평가기술법을 거대억새 파티클 보드를 페놀수지로 함침한 후 탄화온도별(600, 800, 1000, $1200^{\circ}C$)로 제조한 세라믹에 적용하였다. 동적 탄성계수와 정적 휨 탄성계수는 탄화온도가 증가할수록 증가하였다. 휨 강도에 대한 동적 탄성계수 및 정적 휨 탄성계수는 밀접한 상관관계를 나타내었다. 그러나 휨 강도에 대한 상관관계에서 정적 탄성계수 보다 동적 탄성계수가 더 밀접한 상관관계를 나타내었다. 따라서 공진 주파수 모드를 사용하는 동적 탄성계수측정법으로 소성온도에 따라 제조된 거대억대 파티클보드의 휨 강도를 예측하는 비파괴 평가 방법으로 유용할 것으로 판단된다.

The Mechanical Behavior and the Anatomical Changes of Wood due to Variation of Deflection Rates

  • Kang, Chun Won
    • Journal of the Korean Wood Science and Technology
    • /
    • 제33권5호통권133호
    • /
    • pp.7-12
    • /
    • 2005
  • The objective of this study is to estimate the mechanical behavior in bending and the anatomical changes of wood under several deflection rates. Sample specimens of water-saturated Japanese cedar (Cryptomeria japonica) were stressed to rupture under several deflection rates. Mechanical properties of wood such as modulus of elasticity, modulus of rupture and stress at proportional limit, and anatomical changes affected by deflection rates were estimated. Microscopic observations on compression side of the test specimens when the specimen was loaded to rupture were carried out by the SEM (scanning electron microscopy). The results are summarized as follows: 1. The mechanical properties of wood were affected by variations of the deflection rates. The modulus of elasticity (MOE), modulus of rupture (MOR) and stress at proportional limit were in proportion to the logarithm of deflection rates. 2. The deflection of wood at rupture in bending increased as deflection rates decreased. 3. The variations of the microscopic deformations of sample specimens were closely related to the deflection of wood at rupture. In case of largely deflected wood by maximum bending load, severe and abundant microscopic deformations were observed.

Effects of Span-to-depth Ratio and Poisson's Ratio on Elastic Constants from Bending and Plate Tests

  • Jeong, Gi Young;Kong, Jin Hyuk
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권2호
    • /
    • pp.177-185
    • /
    • 2015
  • The goal of this study is to evaluate the limitation of ASTM D 198 bending and ASTM D 3044 in determination of elastic modulus and shear modulus. Different material properties and span to depth ratios were used to analyze the effects of material property and testing conditions. The ratio of true elastic modulus to apparent elastic modulus evaluated from ASTM D 198 bending sharply decreased with increment of span to depth ratio. Shear modulus evaluated from ASTM D 198 bending decreased with increment of depth, whereas shear modulus evaluated from ASTM D 3044 was hardly influenced by increment of depth. Poisson's ratio influenced shear modulus from ASTM D 198 bending but did not influence shear modulus from ASTM D 3044. Different shearing factor was obtained for different depths of beams to correct shear modulus obtained from ASTM D 198 bending equivalent to shear modulus from theory of elasticity. Equivalent shear modulus of materials could be obtained by applying different shearing factors associated with beam depth for ASTM D 198 bending and correction factor for ASTM D 3044.

소나무 압축응력재(壓縮應力材)의 동(動) 탄성율(彈性率)과 내부마찰(內部摩擦) (Dynamic MOE and Internal Friction of Compression Woods in Pinus densiflora)

  • 홍병화;변희섭
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권2호
    • /
    • pp.32-36
    • /
    • 1995
  • A study was conducted to evaluate the dynamic mechanical properties (modulus of elasticity, resonant frequency and interanal friction) of compression wood in Pinus densiflora. Vibration method was used for estimation of dynamic modulus of elasticity and the values were compared to those of static bending modulus of elasticity. The results obtained are as follows: 1. The dynamic modulus of elasticity of compression wood decreased, whereas that of normal wood increased, with increasing specific gravity. 2. The resonant frequency of compression wood decreased, whereas that of normal wood increased, with increasing specific gravity. 3. The internal friction of compression wood increased with increasing specific gravity. 4. The correlation coefficients between dynamic and static moduli of elasticity in compression and normal woods were high.

  • PDF