• 제목/요약/키워드: bending loads

검색결과 713건 처리시간 0.022초

Fluctuating wind and wave simulations and its application in structural analysis of a semi-submersible offshore platform

  • Ma, Jin;Zhou, Dai;Han, Zhaolong;Zhang, Kai;Bao, Yan;Dong, Li
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.624-637
    • /
    • 2019
  • A semi-submersible offshore platform always operates under complex weather conditions, especially wind and waves. It is vital to analyze the structural dynamic responses of the platform in short-term sea states under the combined wind and wave loads, which touches upon three following work. Firstly, a derived relationship between wind and waves reveals a correlation of wind velocity and significant wave height. Then, an Improved Mixture Simulation (IMS) method is proposed to simulate the time series of wind/waves accurately and efficiently. Thus, a wind-wave scatter diagram is expanded from the traditional wave scatter diagram. Finally, the time series of wind/wave pressures on the platform in the short-term sea states are converted by Workbench-AQWA. The numerical results demonstrate that the proposed numerical methods are validated to be applicable for wind and wave simulations in structural analyses. The structural dynamic responses of the platform members increase with the wind and wave strength. In the up-wind and wave state, the stresses on the deck, the connections between deck and columns, and the connection between columns and pontoons are relatively larger under the vertical bending moment. These numerical methods and results are wished to provide some references for structural design and health monitoring of several offshore platforms.

Experimental Study on Low Cyclic Loading Tests of Steel Plate Shear Walls with Multilayer Slits

  • Lu, Jinyu;Yu, Shunji;Qiao, Xudong;Li, Na
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1210-1218
    • /
    • 2018
  • A new type of earthquake-resisting element that consists of a steel plate shear wall with slits is introduced. The infill steel plate is divided into a series of vertical flexural links with vertical links. The steel plate shear walls absorb energy by means of in-plane bending deformation of the flexural links and the energy dissipation capacity of the plastic hinges formed at both ends of the flexural links when under lateral loads. In this paper, finite element analysis and experimental studies at low cyclic loadings were conducted on specimens with steel plate shear walls with multilayer slits. The effects caused by varied slit pattern in terms of slit design parameters on lateral stiffness, ultimate bearing capacity and hysteretic behavior of the shear walls were analyzed. Results showed that the failure mode of steel plate shear walls with a single-layer slit was more likely to be out-of-plane buckling of the flexural links. As a result, the lateral stiffness and the ultimate bearing capacity were relatively lower when the precondition of the total height of the vertical slits remained the same. Differently, the failure mode of steel plate shear walls with multilayer slits was prone to global buckling of the infill steel plates; more obvious tensile fields provided evidence to the fact of higher lateral stiffness and excellent ultimate bearing capacity. It was also concluded that multilayer specimens exhibited better energy dissipation capacity compared with single-layer plate shear walls.

보부재 불연속성과 수평비정형성을 고려한 건물의 풍하중과 지진하중에 의한 응답해석 (Structural Performance Assessment of Buildings Considering Beam Discontinuity and Horizontal Irregularity under Wind and Earthquake Loads)

  • 수딥타 차크라보르티;앰디 라지불 이스람;김두기
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권5호
    • /
    • pp.10-19
    • /
    • 2022
  • 구조물의 비정형성이 풍하중과 지진하중을 받는 구조물의 안전성에 미치는 영향에 대해 검토하였다. 층별 보부재의 불연속성과 O자형 수평비정형성의 관점에서 4가지 유형의 구조물을 선정하여 구조거동을 평가하였다. ACI 318-11 조건에 대해 풍하중 및 지진하중에 의한 구조물의 변위, 휨모멘트, 축력, 비틀림, 층간변위 응답을 검토하였다. 보부재 불연속성을 갖는 구조물의 상부에 갖는 건물이 가장 큰 복원력을 보였으며, O자형 수평비정형 건물은 전도에 대한 저항이 크므로 횡하중에 대해 안전하였다.

Two-dimensional curved panel vibration and flutter analysis in the frequency and time domain under thermal and in-plane load

  • Moosazadeh, Hamid;Mohammadi, Mohammad M.
    • Advances in aircraft and spacecraft science
    • /
    • 제8권4호
    • /
    • pp.345-372
    • /
    • 2021
  • The analysis of nonlinear vibrations, buckling, post-buckling, flutter boundary determination and post-flutter behavior of a homogeneous curved plate assuming cylindrical bending is conducted in this article. Other assumptions include simply-supported boundary conditions, supersonic aerodynamic flow at the top of the plate, constant pressure conditions below the plate, non-viscous flow model (using first- and third-order piston theory), nonlinear structural model with large deformations, and application of mechanical and thermal loads on the curved plate. The analysis is performed with constant environmental indicators (flow density, heat, Reynolds number and Mach number). The material properties (i.e., coefficient of thermal expansion and modulus of elasticity) are temperature-dependent. The equations are derived using the principle of virtual displacement. Furthermore, based on the definitions of virtual work, the potential and kinetic energy of the final relations in the integral form, and the governing nonlinear differential equations are obtained after fractional integration. This problem is solved using two approaches. The frequency analysis and flutter are studied in the first approach by transferring the handle of ordinary differential equations to the state space, calculating the system Jacobin matrix and analyzing the eigenvalue to determine the instability conditions. The second approach discusses the nonlinear frequency analysis and nonlinear flutter using the semi-analytical solution of governing differential equations based on the weighted residual method. The partial differential equations are converted to ordinary differential equations, after which they are solved based on the Runge-Kutta fourth- and fifth-order methods. The comparison between the results of frequency and flutter analysis of curved plate is linearly and nonlinearly performed for the first time. The results show that the plate curvature has a profound impact on the instability boundary of the plate under supersonic aerodynamic loading. The flutter boundary decreases with growing thermal load and increases with growing curvature.

Potential side-NSM strengthening approach to enhance the flexural performance of RC beams: Experimental, numerical and analytical investigations

  • Md. Akter, Hosen; Mohd Zamin, Jumaat;A.B.M. Saiful, Islam;Khalid Ahmed, Al Kaaf;Mahaad Issa, Shammas;Ibrahim Y., Hakeem;Mohammad Momeen, Ul Islam
    • Structural Engineering and Mechanics
    • /
    • 제85권2호
    • /
    • pp.179-195
    • /
    • 2023
  • The performance of reinforced concrete (RC) beam specimens strengthened using a newly proposed Side Near Surface Mounted (S-NSM) technology was investigated experimentally in this work. In addition, analytical and nonlinear finite element (FE) modeling was exploited to forecast the performance of RC members reinforced with S-NSM utilizing steel bars. Five (one control and four strengthened) RC beams were evaluated for flexural performance under static loading conditions employing four-point bending loads. Experimental variables comprise different S-NSM reinforcement ratios. The constitutive models were applied for simulating the non-linear material characteristics of used concrete, major, and strengthening reinforcements. The failure load and mode, yield and ultimate strengths, deflection, strain, cracking behavior as well as ductility of the beams were evaluated and discussed. To cope with the flexural behavior of the tested beams, a 3D non-linear FE model was simulated. In parametric investigations, the influence of S-NSM reinforcement, the efficacy of the S-NSM procedure, and the structural response ductility are examined. The experimental, numerical, and analytical outcomes show good agreement. The results revealed a significant increase in yield and ultimate strengths as well as improved failure modes.

Numerical analysis of the combined aging and fillet effect of the adhesive on the mechanical behavior of a single lap joint of type Aluminum/Aluminum

  • Medjdoub, S.M.;Madani, K.;Rezgani, L.;Mallarino, S.;Touzain, S.;Campilho, R.D.S.G.
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.693-707
    • /
    • 2022
  • Bonded joints have proven their performance against conventional joining processes such as welding, riveting and bolting. The single-lap joint is the most widely used to characterize adhesive joints in tensile-shear loadings. However, the high stress concentrations in the adhesive joint due to the non-linearity of the applied loads generate a bending moment in the joint, resulting in high stresses at the adhesive edges. Geometric optimization of the bonded joint to reduce this high stress concentration prompted various researchers to perform geometric modifications of the adhesive and adherends at their free edges. Modifying both edges of the adhesive (spew) and the adherends (bevel) has proven to be an effective solution to reduce stresses at both edges and improve stress transfer at the inner part of the adhesive layer. The majority of research aimed at improving the geometry of the plate and adhesive edges has not considered the effect of temperature and water absorption in evaluating the strength of the joint. The objective of this work is to analyze, by the finite element method, the stress distribution in an adhesive joint between two 2024-T3 aluminum plates. The effects of the adhesive fillet and adherend bevel on the bonded joint stresses were taken into account. On the other hand, degradation of the mechanical properties of the adhesive following its exposure to moisture and temperature was found. The results clearly showed that the modification of the edges of the adhesive and of the bonding agent have an important role in the durability of the bond. Although the modification of the adhesive and bonding edges significantly improves the joint strength, the simultaneous exposure of the joint to temperature and moisture generates high stress concentrations in the adhesive joint that, in most cases, can easily reach the failure point of the material even at low applied stresses.

Moment redistribution of RC continuous beams: Re-examination of code provisions

  • Da Luo;Zhongwen Zhang;Bing Li
    • Structural Engineering and Mechanics
    • /
    • 제85권5호
    • /
    • pp.679-691
    • /
    • 2023
  • Many codes allow designers to use the bending moment diagram computed by elastic analysis and modify it by a certain amount of moment redistribution (MR) to account for plastic behaviour of continuous beams. However, several researchers indicated that the MR at the ultimate limit state (𝛽u) for some beams deviate significantly from the specified values of various codes. This paper examines the applicability of the provisions on 𝛽u in ACI 318-19 and Eurocode 2 through numerical investigations and comprehensively explores the influencing factors. The results show that some parameters not considered in those codes influence 𝛽u to a certain extent, where the ratio of tensile reinforcement ratio at intermediate support to tensile reinforcement ratio at midspan (𝜌s1/𝜌s2) and load type are crucial parameters to consider. The specific combination of these two parameters may make the codes overestimate or significantly underestimate the 𝛽u. On the other hand, the yield state of both critical sections is found to have an important influence on the influence degree of each parameter on 𝛽u. The yield conditions are investigated, and an empirical judgment equation is proposed. In addition, the influence laws of the critical parameters on 𝛽u have been further proved by theoretical derivation. Finally, due to 𝜀t is found to have a better linear correlation with 𝛽u than xu/d, equations as a function of 𝜀t for predicting the 𝛽u of continuous beams under the two loads are proposed, respectively.

Theoretical formulation for calculating elastic lateral stiffness in a simple steel frame equipped with elliptic brace

  • Jouneghani, Habib Ghasemi;Fanaie, Nader;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • 제45권3호
    • /
    • pp.437-454
    • /
    • 2022
  • Elliptic-braced simple resisting frame as a new lateral bracing system installed in the middle bay of frame in building facades has been recently introduced. This system not only creates a problem for opening space from the architectural viewpoint but also improves the structural behavior. Despite the researches on the seismic performance of lateral bracing systems, there are few studies performed on the effect of the stiffness parameters on the elastic story drift and calculation of period in simple braced steel frames. To overcome this shortcoming, in this paper, for the first time, an analytical solution is presented for calculating elastic lateral stiffness in a simple steel frame equipped with elliptic brace subjected to lateral load. In addition, for the first time, in this study, a precise formulation has been developed to evaluate the elastic stiffness variation in a steel frame equipped with a two-dimensional single-story single-span elliptic brace using strain energy and Castigliano's theorem. Thus, all the effective factors, including axial and shear loads as well as bending moments of elliptic brace could be considered. At the end of the analysis, the lateral stiffness can be calculated by an improved and innovative relation through the energy method based on the geometrical properties of the employed sections and specification of the used material. Also, an equivalent element of an elliptic brace was presented for the ease of modeling and use in linear designs. Application of the proposed relation have been verified through a variety of examples in OpenSees software. Based on the results, the error percentage between the elastic stiffness derived from the developed equations and the numerical analyses of finite element models was very low and negligible.

Stability analysis of settled goaf with two-layer coal seams under building load-A case study in China

  • Yao, Lu;Ning, Jiang;Changxiang, Wang;Meng, Zhang;Dezhi, Kong;Haiyang, Pan
    • Geomechanics and Engineering
    • /
    • 제32권3호
    • /
    • pp.245-254
    • /
    • 2023
  • Through qualitative analysis and quantitative analysis, the contradictory conclusions about the stability of the settled goaf with two-layer coal seams subject to building load were obtained. Therefore, it is necessary to combine the additional stress method and numerical simulation to further analyze the foundation stability. Through borehole analysis and empirical formula analogy, the height of water-conducting fracture zone in No.4 coal and No.9 coal were obtained, providing the calculation range of water-conducting fracture zone for numerical simulation. To ensure the accuracy of the elastic modulus of broken gangue, the stress-strain curve were obtained by broken gangue compression test in dried state of No.4 coal seam and in soaking state of No.9 coal seam. To ensure the rationality of the numerical simulation results, the actual measured subsidence data were retrieved by numerical simulation. FISH language was used to analyze the maximum building load on the surface and determine the influence depth of building load on the foundation. The critical building load was 0.16 MPa of No.4 settled goaf and was 1.6 MPa of No.9 settled goaf. The additional stress affected the water-conducting fracture zone obviously, resulted in the subsidence of water-conducting fracture zone was greater than that of bending subsidence zone. In this paper, the additional stress method was analyzed by numerical simulation method, which can provide a new analysis method for the treatment and utilization of the settled goaf.

Vibrational energy flow in steel box girders: Dominant modes and components, and effective vibration reduction measures

  • Derui Kong;Xun Zhang;Cong Li;Keer Cui
    • Steel and Composite Structures
    • /
    • 제50권3호
    • /
    • pp.347-362
    • /
    • 2024
  • Controlling vibrations and noise in steel box girders is important for reducing noise pollution and avoiding discomfort to residents of dwellings along bridges. The fundamental approach to solving this problem involves first identifying the main path of transmission of the vibration energy and then cutting it off by using targeted measures. However, this requires an investigation of the characteristics of flow of vibration energy in the steel box girder, whereas most studies in the area have focused on analyzing its single-point frequency response and overall vibrations. To solve this problem, this study examines the transmission of vibrations through the segments of a steel box girder when it is subjected to harmonic loads through structural intensity analysis based on standard finite element software and a post-processing code created by the authors. We identified several frequencies that dominated the vibrations of the steel box girder as well as the factors that influenced their emergence. We also assessed the contributions of a variety of vibrational waves to power flow, and the results showed that bending waves were dominant in the top plate and in-plane waves in the vertical plate of the girder. Finally, we analyzed the effects of commonly used stiffened structures and steel-concrete composite structures on the flow of vibration energy in the girder, and verified their positive impacts on energy regionalization. In addition to providing an efficient tool for the relevant analyses, the work here informs research on optimizing steel box girders to reduce vibrations and noise in them.