• Title/Summary/Keyword: bending failure

Search Result 799, Processing Time 0.029 seconds

Numerical Examinations of Damage Process on the Chuteway Slabs of Spillway under Various Flow Conditions (여수로 방류에 따른 여수로 바닥슬래브의 손상 발생원인 수치모의 검토)

  • Yoo, Hyung Ju;Shin, Dong-Hoon;Kim, Dong Hyun;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.4
    • /
    • pp.47-60
    • /
    • 2021
  • Recently, as the occurrence frequency of sudden floods due to climate variability increased, the damage of aging chuteway slabs of spillway are on the rise. Accordingly, a wide array of field survey, hydraulic experiment and numerical simulation have been conducted to find the cause of damage on chuteway slabs. However, these studies generally reviewed the flow characteristics and distribution of pressure on chuteway slabs. Therefore the derivation of damage on chuteway slabs was relatively insufficient in the literature. In this study, the cavitation erosion and hydraulic jacking were assumed to be the causes of damage on chuteway slabs, and the phenomena were reproduced using 3D numerical models, FLOW-3D and COMSOL Multiphysics. In addition, the cavitation index was calculated and the von Mises stress by uplift pressure distribution was compared with tensile and bending strength of concrete to evaluate the possibility of cavitation erosion and hydraulic jacking. As a result of numerical simulation on cavitation erosion and hydraulic jacking under various flow conditions with complete opening gate, the cavitation index in the downstream of spillway was less than 0.3, and the von Mises stress on concrete was 4.6 to 5.0 MPa. When von Mises stress was compared with tensile and bending strength of concrete, the fatigue failure caused by continuous pressure fluctuation occurred on chuteway slabs. Therefore, the cavitation erosion and hydraulic jacking caused by high speed flow were one of the main causes of damage to the chuteway slabs in spillway. However, this study has limitations in that the various shape conditions of damage(cavity and crack) and flow conditions were not considered and Fluid-Structure Interaction (FSI) was not simulated. If these limitations are supplemented and reviewed, it is expected to derive more efficient utilization of the maintenance plan on spillway in the future.

Mechanical Properties of a Lining System under Cyclic Loading Conditions in Underground Lined Rock Cavern for Compressed Air Energy Storage (복공식 지하 압축공기에너지 저장공동의 내압구조에 대한 반복하중의 역학적 영향평가)

  • Cheon, Dae-Sung;Park, Chan;Jung, Yong-Bok;Park, Chul-Whan;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.77-85
    • /
    • 2012
  • In a material, micro-cracks can be progressively occurred, propagated and finally lead to failure when it is subjected to cyclic or periodic loading less than its ultimate strength. This phenomenon, fatigue, is usually considered in a metal, alloy and structures under repeated loading conditions. In underground structures, a static creep behavior rather than a dynamic fatigue behavior is mostly considered. However, when compressed air is stored in a rock cavern, an inner pressure is periodically changed due to repeated in- and-out process of compressed air. Therefore mechanical properties of surrounding rock mass and an inner lining system under cyclic loading/unloading conditions should be investigated. In this study, considering an underground lined rock cavern for compressed air energy storage (CAES), the mechanical properties of a lining system, that is, concrete lining and plug under periodic loading/unloading conditions were characterized through cyclic bending tests and shear tests. From these tests, the stability of the plug was evaluated and the S-N line of the concrete lining was obtained.

Development and Evaluation of Hollow-head Precast Reinforced Concrete Pile (말뚝머리 중공 프리캐스트 철근콘크리트 말뚝의 성능 평가)

  • Bang, Jin-Wook;Hyun, Jung-Hwan;Ahn, Kyung-Chul;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.130-137
    • /
    • 2017
  • Due to the economic growth and development of construction technology, a role of foundation to resist heavy loads has been increased. In this present study to improve the structural performance of reinforced concrete pile, the precast HPC pile reinforced with rebar and filling concrete was developed and the strength of pile was predicted based on the limit state design method. The safety of HPC pile strength was evaluated by comparing with the design values. The geometry of HPC pile is a decagon cross section with a maximum width of 500 mm and a minimum width of 475 mm, and the hollow head of pile thickness is 70 mm. The inner area of the hollow head part was made as the square ribbed shape presented in the limit state design code in order to achieve horizontal shear strength between pile concrete and filling concrete. From the shear test results, it was found that the stable shear strength were secured without abrupt failure until maximum load stage despite the shear cracks was found. Shear strength is 135% and 119% higher than that of design value calculated from limit state design code. The driving test results of HPC pile according to the presence of additional reinforcement showed the outstanding crack resistance against impact loads condition. From the bending test results the flexural load between PHC pile and HPC pile was 1.51 times and 1.48 times higher than that of the design flexural load of conventional PHC pile.

Examination of the Flick-Flack Salto Backward Stretched of Success and Fall Occurs on the Balance Beam (평균대 백핸드 수완 동작 성.패 시 실수요인 규명)

  • So, Jae-Moo;Kim, Yoon-Ji;Kim, Yong-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.137-146
    • /
    • 2008
  • The purpose of this study is to examine the causes of errors from EGR posture on the balance beam, which is bending flick-flack salto backward stretched national team players through kinematic analysis, and present training methods for them so as to provide scientifically useful information to coaches and athlete. Findings from this study are summarized below. The most important factors that affect the errors in boyd center position and speed change were the speed change of left and right body centers and the horizontal and vertical speed changes. The left and right acceleration changes were greater in failed posture than in successful posture. The horizontal and vertical accelerations in E3 and E5 were the key factors that affected the backward somersault and landing. The angular speed changes which varied between success and failure were notable in head and shoulder joints. In individual results. The section when the angular speeds of head and shoulder joint must be the greatest was E4. In this section, when the body is extending instantly in a bent posture, increasing the angular speeds of head, shoulder and hip joints can improve the duration of staying in the air and the rotation radius of a somersault.

Evaluation of Fracture Toughness for Steel Fiber Reinforced High Strength Concrete by Non-linear Fracture Mechanics Parameter(J-integral) (비선형 파괴역학 파라메터(J-적분)에 의한 강섬유보강 고강도콘크리트의 파괴인성 평가)

  • Koo, Bong Kuen;Kim, Tae Bong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.25-37
    • /
    • 1993
  • This paper describes the use of the J-integral, a one parameter of the non-linear fracture mechanics(NLFM), as a means to measure toughness of steel fiber reinforced concrete. This parameter can be conveniently evaluated from experimentally determined load-deflection curves from flexural tests when a maximum-load failure criterion is employed. And, for high strength concrete which was reinforced steel fiber, with two different fiber length in the form of notched beams, were tested under 3-point bending, and $J_{IC}$, as well as the linear elastic fracture mechanics(LEFM) parameters $K_{IC}$ and $G_{IC}$ were evaluated. The results suggest that $J_{IC}$ is a promising fracture criterion for all of these. while $K_{IC}$(or $G_{IC}$) almost certainly are not. Also it was found that a fiber addition of less than 0.5% did not improve the fracture toughness of the high strength concrete. However, at more than 1.0% in fiber contents, $J_{IC}$ showed significant increases. reflecting the changed character of the concrete; $K_{IC}$ and $G_{IC}$ did not.

  • PDF

Static Strength of Composite Single-lap Joints Using I-fiber Stitching Process with different Stitching Pattern and Angle (I-fiber Stitching 공법을 적용한 복합재료 Single-lap Joint의 Stitching 패턴과 각도에 따른 정적 강도 연구)

  • Song, Sang-Hoon;Back, Joong-Tak;An, Woo-Jin;Choi, Jin-Ho
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.296-301
    • /
    • 2020
  • Laminated composite materials have excellent in-plane properties, but are vulnerable in thickness directions, making it easy to delamination when bending and torsion loads are applied. Thickness directional reinforcement methods of composite materials that delay delamination include Z-pinning, Stitching, Tufting, etc., and typically Z-pinning and Stitching method are commonly used. The Z-pinning is reinforcement method by inserting metal or carbon pin in the thickness direction of prepreg, and the conventional stitching process is a method of reinforcing the mechanical properties in the thickness direction by intersecting the upper and lower fibers on the preform. In this paper, I-fiber stitching method, which complement and improve weakness of Z-pinning and Stitching method, was proposed, and the static strength of composite single-lap joints using I-fiber stitching process were evaluated. The single-lap joints were fabricated by a co-curing method using an autoclave vacuum bag process. The thickness of the composite adherend was fixed, and 5 types of specimens were manufactured with varying the stitching pattern (5×5, 7×7) and angle (0°, 45°). From the test, the failure load of the specimen reinforced by the I-fiber stitching process was increased by up to 143% compared to that of specimen without reinforcement.

Flexural Behavior of RC Beams Strengthened with Steel Strand and Carbon Fiber Sheet (강연선 및 탄소섬유쉬트로 보강된 철근 콘크리트 보의 휨거동 특성)

  • 양동석;박선규;이용학
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.216-222
    • /
    • 2002
  • With deterioration of the nation's infrastructure comes the growing, need for effective means of rehabilitating structures. Possibly one for the most challenging tasks is to upgrade the overall capacity of concrete structure. Therefore, considerable efforts are still being made to develop new construction materials. Rehabilitation of damaged RC structures occasionally requires the removal and replacement of concrete in the tension zone of the structural members. Typical situation where the tension zone repair is necessary is when the concrete in the tension zone in beams or slabs has spalled off as a result of corrosion in the bottom reinforcing bars or due to extensive fire. The rehabilitation of such conditions normally involves the removal of the concrete beyond the reinforcement bars, cleaning or replacing the tensile bars and reinstatement of concrete to cover the steel bars the original shape and size. This study focused on the flexural behavior of reinforced concrete beams strengthened by steel strand and carbon fiber sheet in the tension zone. The properties of beams are 15$\times$25 cm rectangular and over a 200cm span. Test parameters in this experimental study were strengthening methods, jacking volume, the number of sheet. We investigated the flexural behavior of simply supported RC beams which are strengthened with the carbon fiber sheet, monotonic loads. Attention is concentrated upon overall bending capacity, deflection, ductility index, failure mode and crack development of repaired and rehabilitated beams.

Evaluation of Flexural Properties of Indirect Gum-Shade Composite Resin for Esthetic Improvement (심미성 향상을 위한 간접수복용 Gum-Shade 복합레진의 굽힘 특성 평가)

  • Im, Yong-Woon;Hwang, Seong-Sig
    • Journal of dental hygiene science
    • /
    • v.15 no.4
    • /
    • pp.407-412
    • /
    • 2015
  • This study investigated flexural properties of indirect Gum-shade composite resins for esthetic improvement. The material utilized in this study was Crea.lign, Twiny flow and Twiny paste (TP). Ten specimens were fabricated with a dimension of $25{\times}2{\times}2mm$ according to the ISO 4049. After fabrications, specimens were stored in the distilled water for 24 hours at the temperature of $37^{\circ}C$. Three-point bending test was performed in universal testing machine (Instron 3344; Instron, USA) at a crosshead speed of 1 mm/min until the failure occurred. TP exhibited a higher flexural strength (FS) and flexural modulus (FM) compared to the flowable materials. There were significant differences among the three materials in FS and FM. However, there was no significant difference in work of fracture (WOF) in all tested materials (p>0.05). In Weibull analysis, TP showed the greatest Weibull modulus which means a higher reliability of the materials. Also, Gum-shade composite resins revealed a strong correlation in all flexural properties. There was a positive correlation in FS-FM ($r^2=0.99$) and a negative correlation between FS-WOF and FM-WOF ($r^2>0.97$). Therefore, this confirmed that flexural property was important for mechanical behavior evaluation and useful information. To addition, this improved among mechanical properties correlation of materials as important factor.

An Experimental Study on the Evaluation of Early-Age Mechanical Properties of Polymer-Based Thin Spray-on Liners (폴리머 기반 박층 라이너의 초기재령 특성 평가를 위한 실험적 연구)

  • Chang, Soo-Ho;Lee, Gyu-Phil;Han, Jin-Tae;Park, Young-Taek;Choi, Soon-Wook;Hwang, Gwi-Sung;Choi, Myung-Sik
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.413-427
    • /
    • 2013
  • Thin Spray-on Liners(TSLs) based on polymer materials have been considered as an alternative to shotcrete and wire mesh in relatively fair rock conditions, and used in mines since 1990s. Nevertheless, Few experimental studies on their mechanical properties necessary for the evaluation of their bearing capacities as a support member have been carried out. In this study, tensile and bond strengths of two kinds of TSLs with different material compositions were measured at the age of 7 days. In addition, two kinds of bending tests proposed by EFNARC (2008) to simulate representative failure mechanisms of TSLs were carried out on the same materials and curing age as in tension and pull-out tests. From the tests, tensile strength of a TSL is shown to increase as its content of polymer is higher. In contrast, its bond strength seems to be in inverse proportion to its polymer content. Especially, the TSL material in which a cementitious component is included with relatively smaller polymer content shows a faster hardening characteristic which results in higher resistance to de-bonding between a TSL and a substrate. As a result, it is shown that the performance of TSLs might be dependent upon its corresponding polymer content.

A Study on Performance Improvement of Fruit Vegetables Automatic Grafting System (과채류 접목시스템 개선 연구)

  • Kang, Dong Hyeon;Lee, Si Young;Kim, Jong Koo;Park, Min Jung;Son, Jin Kwan;Yun, Sung-Wook;An, Se Woong;Jung, In Kyu
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.215-220
    • /
    • 2017
  • This study was conducted to improve the insufficiency of fruit vegetable grafting system developed by National Institute of Agricultural Sciences, Rural Development Administration. When the rotary blade cut the stem of scions and rootstocks, the grafting failure at curved cutting surfaces happened. The cutting depth of a tomato seedling by a rotated cutter was calculated 0.11 mm even when the cutting arm length and the maximum stem diameter were 50 mm and 5 mm, respectively. Mathematical analysis and high-speed photography showed that there was no problem by cutting in straight the stem of scions and rootstocks. The compression test of seedling stems to design the optimal shape of gripper showed that stems were not completely restored when they were compressed above 0.8 mm and 0.6 mm in case of rootstocks and scion, respectively. This study found that the bending angle of stem of tomato seedlings at the grafting period was 10 degree on average. The optimal gripper finger was the edge finger type which could be precisely set center point by adjusting the distance between fingers. In addition, it was found that most of seedling could be grasped without damage when the finger-to-finger distances is set to 2.5 mm for scion and 3.0 mm for rootstocks and finger are coated by 1 mm-thick flexible material.