• 제목/요약/키워드: bending failure

검색결과 797건 처리시간 0.026초

폭발하중을 받는 철근콘크리트 부재의 직접전단 파괴 및 휨 파괴 저항성능 평가를 위한 수치해석 모델 개발 (Numerical Model to Evaluate Resistance against Direct Shear Failure and Bending Failure of Reinforced Concrete Members Subjected to Blast Loading)

  • 주석준;곽효경
    • 한국전산구조공학회논문집
    • /
    • 제34권6호
    • /
    • pp.393-401
    • /
    • 2021
  • 본 논문에서는 폭발하중을 받는 부재의 저항성능 평가를 위한 모멘트-곡률 관계 기반 수치해석 기법을 소개한다. 직접전단 파괴 모드를 고려하기 위하여 경험적인 직접전단응력-슬립양 관계를 기반으로 하는 무차원 스프링 요소를 도입하였다. 재료에 대해 정의된 동적증가계수 식을 바탕으로 단면의 모멘트-곡률 관계에 직접적으로 적용가능한 단면의 곡률 변화율에 따른 동적증가계수 식을 제작하였다. 또한 부착슬립의 영향을 고려하기 위하여 소성힌지영역 내에 등가 휨강성을 도입하였다. 제안된 수치해석 모델의 타당성 검증을 위하여 실험결과와의 비교연구를 수행하였으며, 단자유도계 모델의 해석결과와의 비교를 통해 본 수치해석 모델의 우수성을 확인하였다. P-I 선도를 제작하여 부재의 휨 파괴 및 직접전단 파괴에 대한 저항성능을 평가하였으며, 매개변수 연구를 수행하여 P-I 선도 및 저항성능의 변화를 확인하였다.

2축 휨을 받는 구형기둥의 축력-모멘트 상관곡선 (Failure Surface of Rectangular Columns Subject to Biaxial Bending)

  • 김진근;양주경
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 봄 학술발표회 논문집
    • /
    • pp.113-118
    • /
    • 1993
  • A method for approximating the failure surfaces for columns in compression and biaxial bending was proposed by using the moments along the line of a diagonal of the section. This method showed the better approximations for the failure surfaces of columns than the method of ACI. To calculate the moments along the line of a diagonal of the section, an approximate method which is not influenced by the number of steel s and the location of inner steels was proposed This method gave satisfactory approximations for practical sections of columns.

  • PDF

The bending-shear-torsion performance of prestressed composite box beam

  • Wei, Hu S.;Yu, Zhao K.;Jie, Wei C.
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.577-585
    • /
    • 2017
  • To study the mechanical performances of prestressed steel-concrete composite box beam under combination of bending-shear-torsion, nine composite beams with different ratio of torsion to bending were designed. Torsion was applied to the free end of the beam with jacks controlled accurately with peripherals, as well as concentrated force on the mid-span with jacks. Based on experimental data and relative theories, mechanical properties of composite beams were analyzed, including torsional angle, deformation and failure patterns. The results showed that under certain ratio of torsion to bending, cracking and ultimate torsion increased and reached to its maximum at the ratio of 2. Three phases of process is also discussed, as well as the conditions of each failure mode.

U-bending 공정에서 틈새간격이 샌드위치판재의 내부구조 전단변형에 미치는 영향 (Effect of The Clearance on Core Deformation of Sandwich Plate during U-bending)

  • 성대용;정창균;심도식;양동열;정완진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.320-323
    • /
    • 2008
  • In this study, a macroscopic approach was carried out to gain insight into the bending mechanism of metallic sandwich plates. Shear force-punch stroke curves for various clearances were analytically derived for mild steel (CSP 1N) sandwich plates with the total thickness of 3 mm and 0.5 mm face sheets. As the clearance increases, shear force of the inner structures and sensitivity of punch stroke decrease. These data are useful to derive a criterion of judgment for core shear failure and de-bonding failure during U-bending.

  • PDF

Bending-shear Strength of Concrete-filled Double Skin Circular Steel Tubular Beams with SMA and Rebar in Normal-and-High-strength Concrete

  • Lee, Seung Jo;Park, Jung Min
    • Architectural research
    • /
    • 제23권1호
    • /
    • pp.11-17
    • /
    • 2021
  • A concrete-filled circular steel tube beam was fabricated, and a bending test was performed to analyze its failure modes, displacement ductility, bending-shear strength, and load-central deflection relationship. For the bending test, the installation position of the shape memory alloy (SMA) inside and outside the double-skin steel tube was used, and the rebar installation position, the concrete strength, the mixing of fibers, and the inner-outer diameter ratio as the main parameters. The test results showed that the installation positions of the reinforcements inside and outside the double-skin steel tube and the inner-outer diameter ratio of the steel tube affected the ductility, maximum load, and failure mode. In general, the specimen made of general concrete with SMA installed outside and inside (OI) the double-skin steel tube showed the best results.

Comments on a Case Study on Engineering Failure Analysis of Link Chain

  • Yu, George Y.H.
    • Safety and Health at Work
    • /
    • 제12권4호
    • /
    • pp.544-545
    • /
    • 2021
  • The article by Tae-Gu Kim et al. conducted elastic FE modeling, which was inappropriate for fracture of elastic-plastic chain material (11.3% of elongation). FE analysis results and the findings in the fracto-graphic analysis did not tally but contradicted each other. The article identified "incorrect installation"/bending forces as the root cause while FE results of the chain under bending forces showed very low stresses at fracture locations but the highest stress in the middle of shank of the chain. The article's "step-like topographies indicating the fracture due to bending moment rather than uniaxial tension" lacked scientific support. The load value carried by each chain section under bending/incorrect installation was only half of that under tension, thus the article using same load value in FE simulation comparison for bending and tension was incorrect. The real cause of the chain fracture was likely improper checking the lifted load or/and using the wrong chain with much lower safety working load.

Failure life estimation of sharp-notched circular tubes with different notch depths under cyclic bending

  • Lee, Kuo-Long;Chang, Kao-Hua;Pan, Wen-Fung
    • Structural Engineering and Mechanics
    • /
    • 제60권3호
    • /
    • pp.387-404
    • /
    • 2016
  • In this paper, the response and failure of sharp-notched 6061-T6 aluminum alloy circular tubes with five different notch depths of 0.4, 0.8, 1.2, 1.6 and 2.0 mm subjected to cyclic bending were experimentally and theoretically investigated. The experimental moment-curvature relationship exhibits an almost steady loop from the beginning of the first cycle. And, the notch depth has almost no influence on its relationship. However, the ovalization-curvature relationship exhibits a symmetrical, increasing, and ratcheting behavior as the number of cycles increases. In addition, a higher notch depth of a tube leads to a more severe unsymmetrical trend of the ovalization-curvature relationship. Focusing on the aforementioned relationships, the finite element software ANSYS was used to continue the related theoretical simulation. Furthermore, the five groups of tubes tested have different notch depths, from which five unparallel straight lines can be observed from the relationship between the controlled curvature and the number of cycles required to produce failure in the log-log scale. Finally, a failure model was proposed to simulate the aforementioned relationship. Through comparison with the experimental data, the proposed model can properly simulate the experimental data.

LCD Module내 COF Bending에 따른 Lead Broken Failure의 개선 (Improvement of COF Bending-induced Lead Broken Failure in LCD Module)

  • 심범주;최열;이준신
    • 한국전기전자재료학회논문지
    • /
    • 제21권3호
    • /
    • pp.265-271
    • /
    • 2008
  • TCP(Tape Carrier Package), COG (Chip On Glass), COF(Chip On Film) are three methods for connecting LDI(LCD Driver IC) with LCD panels. Especially COF is growing its portion of market place because of low cost and fine pitch correspondence. But COF has a problem of the lead broken failure in LCD module process and the usage of customer. During PCB (Printed Circuit Board) bonding process, the mismatch of the coefficient of thermal expansion between PCB and D-IC makes stress-concentration in COF lead, and also D-IC bending process during module assembly process makes the level of stress in COF lead higher. As an affecting factors of lead-broken failure, the effects of SR(Solder Resister) coating on the COF lead, surface roughness and grain size of COF lead, PI(Polyimide) film thickness, lead width and the ACF(Anisotropic Conductive Film) overlap were studied, The optimization of these affecting manufacturing processes and materials were suggested and verified to prevent the lead-broken failure.

원주방향 노치형 감육부를 가진 배관의 손상거동 평가 (Evaluation of Failure Behavior of a Pipe Containing Circumferential Notch-Type Wall Thinning)

  • 김진원;박치용
    • 대한기계학회논문집A
    • /
    • 제27권8호
    • /
    • pp.1295-1302
    • /
    • 2003
  • In order to evaluate a failure behavior of pipe with notch-type wall thinning, the present study performed full-scale pipe tests using the 102mm, Schedule 80 pipe specimen simulated notch- and circular-type thinning defects. The pipe tests were conducted under the conditions of both monotonic and cyclic bending moment at a constant internal pressure of 10 MPa. From the results. of experiment the failure mode, load carrying capacity, deformation ability, and fatigue life of a notch-type wall thinned pipe were investigated, and they were compared with those of a circular-type wall thinned pipe. The failure mode of notched pipe was similar to that of circular-type thinned pipe under the monotonic bending load. Under the cyclic bending load, however, the mode was clearly distinguished with variation in the shape of wall thinning. The load carrying capacity of a pipe containing notch-type wall thinning was about the same or slightly lower than that of a pipe containing circular-type wall thinning when the thinning area was subjected to tensile stress, whereas it was higher than that of a pipe containing circular-type thinning defect when the thinning area was subjected to compressive stress. On the other hand, the deformation ability and fatigue life of a notch-type wall thinned pipe was lower than those of a circular-type wall thinned pipe.

2D 변형률 파손 이론을 이용한 복합재료의 굽힘 거동 해석 (A Study on Bending Behaviors of Laminated Composites using 2D Strain-based Failure Theory)

  • 김진성;노진호;이수용
    • 항공우주시스템공학회지
    • /
    • 제11권5호
    • /
    • pp.13-19
    • /
    • 2017
  • 본 연구에서는 굽힘 하중을 받는 복합재료 적층판의 파손 해석을 위하여 2D 변형률 기반 파손 이론을 적용하였다. 복합재료 적층판의 비선형 기계적 거동을 모사하기 위하여, 선형 증분 접근 방식을 적용하고 단위 길이 적층판에 대한 점진적 파손 해석을 수행하였다. 크로스플라이 및 준등방성 적층 패턴에 대하여 3점 굽힘 시험을 수행하고 해석 결과와 비교 검증하였다.