• Title/Summary/Keyword: bending effect

Search Result 2,182, Processing Time 0.035 seconds

Failure Behavior of FRP RC Beams without Shear Reinforcements (전단 보강이 없는 FRP RC보의 파괴 거동)

  • Lee, Jae-Hoon;Son, Hyun-A;Shin, Sung-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.199-208
    • /
    • 2010
  • In order to substitute FRP bar for steel bar in new structures, it is necessary to establish a reliable design code. But relatively little research has been conducted on the material in Korea. So, a total of 22 beam specimens (18 GFRP reinforced concrete and 4 conventional steel reinforced concrete) were constructed and tested. In the first phase of the experiment, it was carried out to observe flexural behavior, and collect deflection and crack data. In order to eliminate of the uncertainty by the shear reinforcements and induce flexural failure mode, any stirrup were not used and only shear span-depth ratio were adjusted. However, almost beams were broken by shear and the ACI 440.1R, CSA S806, which were used to design test beams, showed considerable deviation between prediction and test results of shear strengths. Therefore in the second phase of the study, shear failure modes and behavior were observed. A standard specimen had dimensions of 3,300 mm long ${\times}$ 800 mm wide ${\times}$ 200 mm effective depth. Clear span and shear span were 2,800 mm, 1,200 mm respectively. Control shear span-depth ratio was 6.0. Four-point bending test over simple support was conducted. Variables of the specimens were concrete compressive strength, type and elastic modulus of reinforcement, shear span-depth ratio, effective reinforcement ratio, the effect of bundle placing method and cover thickness.

Analysis of Seismic Response of the Buried Pipeline with Pipe End Conditions (단부 경계조건을 고려한 매설관의 동적응답 해석)

  • Jeong Jin-Ho;Lee Byong-Gil;Jung Du-Hwoe;Park Byung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.33-43
    • /
    • 2005
  • This work reports results of our study on the dynamic responses of the buried pipelines both along the axial and the transverse directions under various boundary end conditions. In order to investigate the effect of the boundary end conditions for the dynamic responses of the buried pipeline, we have devised a computer program to find the solutions of the formulae on the dynamic responses (displacements, axial strains, and bending strains) under the various boundary end conditions considered in this study, The dynamic behavior of the buried pipelines for the forced vibration is found to exhibit two different forms, a transient response and a steady state response, depending on the time before and after the transfer of a seismic wave on the end of the buried pipeline. We have observed a resonance when the mode wavelength matches the wavelength of the seismic wave, where the mode number(k) of resonance f3r the axial direction. On the other hand, we have not been able to observe a resonance in the analysis of the transverse direction, because the dynamic responses are found to vanish after the seventh mode. From the results of the dynamic responses at many points of the pipeline, we have found that the responses appeared to be dependent critically on the boundary end conditions. Such effects are found to be most prominent especially for the maximum values of the displacement, the strain and its position.

On the Use of Modal Derivatives for Reduced Order Modeling of a Geometrically Nonlinear Beam (모드 미분을 이용한 기하비선형 보의 축소 모델)

  • Jeong, Yong-Min;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.329-334
    • /
    • 2017
  • The structures, which are made up with the huge number of degrees-of-freedom and the assembly of substructures, have a great complexity. In order to increase the computational efficiency, the analysis models have to be simplified. Many substructuring techniques have been developed to simplify large-scale engineering problems. The techniques are very powerful for solving nonlinear problems which require many iterative calculations. In this paper, a modal derivatives-based model order reduction method, which is able to capture the stretching-bending coupling behavior in geometrically nonlinear systems, is adopted and investigated for its performance evaluation. The quadratic terms in nonlinear beam theory, such as Green-Lagrange strains, can be explained by the modal derivatives. They can be obtained by taking the modal directional derivatives of eigenmodes and form the second order terms of modal reduction basis. The method proposed is then applied to a co-rotational finite element formulation that is well-suited for geometrically nonlinear problems. Numerical results reveal that the end-shortening effect is very important, in which a conventional modal reduction method does not work unless the full model is used. It is demonstrated that the modal derivative approach yields the best compromised result and is very promising for substructuring large-scale geometrically nonlinear problems.

Experimental investigation on flexural behaviour of HSS stud connected steel-concrete composite girders

  • Prakash, Amar;Anandavalli, N.;Madheswaran, C.K.;Lakshmanan, N.
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.239-258
    • /
    • 2012
  • In this paper, experimental investigations on high strength steel (HSS) stud connected steel-concrete composite (SCC) girders to understand the effect of shear connector density on their flexural behaviour is presented. SCC girder specimens were designed for three different shear capacities (100%, 85%, and 70%), by varying the number of stud connectors in the shear span. Three SCC girder specimens were tested under monotonic/quasi-static loading, while three similar girder specimens were subjected to non-reversal cyclic loading under simply supported end conditions. Details of casting the specimens, experimental set-up, and method of testing, instrumentation for the measurement of deflection, interface-slip and strain are discussed. It is found that SCC girder specimen designed for full shear capacity exhibits interface slip for loads beyond 25% of the ultimate load capacity. Specimens with lesser degree of shear connection show lower values of load at initiation of slip. Very good ductility is exhibited by all the HSS stud connected SCC girder specimens. It is observed that the ultimate moment of resistance as well as ductility gets reduced for HSS stud connected SCC girder with reduction in stud shear connector density. Efficiency factor indicating the effectiveness of high strength stud connectors in resisting interface forces is estimated to be 0.8 from the analysis. Failure mode is primarily flexure with fracturing of stud connectors and characterised by flexural cracking and crushing of concrete at top in the pure bending region. Local buckling in the top flange of steel beam was also observed at the loads near to failure, which is influenced by spacing of studs and top flange thickness of rolled steel section. One of the recommendations is that the ultimate load capacity can be limited to 1.5 times the plastic moment capacity of the section such that the post peak load reduction is kept within limits. Load-deflection behaviour for monotonic tests compared well with the envelope of load-deflection curves for cyclic tests. It is concluded from the experimental investigations that use of HSS studs will reduce their numbers for given loading, which is advantageous in case of long spans. Buckling of top flange of rolled section is observed at failure stage. Provision of lips in the top flange is suggested to avoid this buckling. This is possible in case of longer spans, where normally built-up sections are used.

Modeling and Analysis of Size-Dependent Structural Problems by Using Low-Order Finite Elements with Strain Gradient Plasticity (변형률 구배 소성 저차 유한요소에 의한 크기 의존 구조 문제의 모델링 및 해석)

  • Park, Moon-Shik;Suh, Yeong-Sung;Song, Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1041-1050
    • /
    • 2011
  • An elasto-plastic finite element method using the theory of strain gradient plasticity is proposed to evaluate the size dependency of structural plasticity that occurs when the configuration size decreases to micron scale. For this method, we suggest a low-order plane and three-dimensional displacement-based elements, eliminating the need for a high order, many degrees of freedom, a mixed element, or super elements, which have been considered necessary in previous researches. The proposed method can be performed in the framework of nonlinear incremental analysis in which plastic strains are calculated and averaged at nodes. These strains are then interpolated and differentiated for gradient calculation. We adopted a strain-gradient-hardening constitutive equation from the Taylor dislocation model, which requires the plastic strain gradient. The developed finite elements are tested numerically on the basis of typical size-effect problems such as micro-bending, micro-torsion, and micro-voids. With respect to the strain gradient plasticity, i.e., the size effects, the results obtained by using the proposed method, which are simple in their calculation, are in good agreement with the experimental results cited in previously published papers.

Effect of the Radius of Curvature on the Contact Pressure Applied to the Endplate of the Sliding Core in an Artificial Intervertebral Disc (인공추간판 슬라이딩 코어의 곡률반경 변화가 종판의 접촉압력에 미치는 영향)

  • Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • The treatments for spinal canal stenosis are radicular cyst removal, spine fusion, and implantation of an artificial intervertebral disc. Artificial intervertebral discs have been most widely used since the mid-2000s. The study of artificial intervertebral discs has been focused on the analysis of the axial rotation, lateral bending, the degrees of freedom of the disc, and flexion-extension of the vertebral body. The issue of fatigue failure years after the surgery has arisen as a new problem. Hence, study of artificial intervertebral discs must be focused on the fatigue failure properties and increased durability of the sliding core. A finite element model based on an in the artificial intervertebral disc (SB Charit$\acute{e}$ III) was produced, and the influence of the radius of curvature and the change in the coefficient of friction of the sliding core on the von-Mises stress and contact pressure was evaluated. Based on the results, new artificial intervertebral disc models (Models-I, -II, and -III) were proposed, and the fatigue failure behavior of the sliding core after a certain period of time was compared with the results for SB Charit$\acute{e}$ III.

A Mechanical Information Model of Line Heating Process using Artificial Neural Network (인공신경망을 이용한 선상가열 공정의 역학정보모델)

  • Park, Sung-Gun;Kim, Won-Don;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.122-129
    • /
    • 1997
  • Thermo-elastic-plastic analyses used in solving plate forming process are often computationally expensive. To obtain an optimal process of line heating typically requires numerous iterations between the simulation and a finite element analysis. This process often becomes prohibitive due to the amount of computer time required for numerical simulation of line heating process. Therefore, a new techniques that could significantly reduce the computer time required to solve a complex analysis problem would be beneficial. In this paper, we considered factors that influence the bending effect by line heating and developed inference engine by using the concept of artificial neural network. To verify the validity of the neural network, we used results obtained from numerical analysis. We trained the neural network with the data made from numerical analysis and experiments varying the structure of neural network, in other words varying the number of hidden layers and the number of neurons in each hidden layers. From that we concluded that if the number of neurons in each hidden layers is large enough neural network having two hidden layers can be trained easily and errors between exact value and results obtained from trained network are not so large. Consequently, if there are enough number of training pairs, artificial neural network can infer similar results. Based on the numerical results, we applied the artificial neural network technique to deal with mechanical behavior of line heating at simulation stage effectively.

  • PDF

Effect of a Mixture of Extracts from Residues of Onion Left after Onion Harvesting and Purslane (Portulaca oleracea) on Productivity and Quality Characteristics of Organic Onions (양파 수확 후 잔재물과 쇠비름 추출물이 유기농 양파의 수확량 및 품질 특성에 미치는 영향)

  • Kim, Tae-Won;Jeon, Byeong-Gyun;Lee, Sung-Ho
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1430-1436
    • /
    • 2017
  • This study assessed the effects of treatment with sap extract from onion residues postharvest and purslane on the quality and quantity of organic onions. At the bending stage, onions treated with the sap extract showed vigorous growth, with higher plant heights, more leaves, and longer sheath lengths than untreated onions. The onion yield was significantly increased when the plant was treated with extracted sap as compared with that of untreated plants (p<0.05). The bulb weight distribution of onions in the mixed onion and purslane treatment was also significantly increased (~300 g) as compared with that of the other treatment (p<0.05). Except for CaO and S, the mineral content of the onions produced from plants treated with the onion and purslane extract mixture was higher than those of onions in the other treatment. The hardness of onions produced from plants treated with the onion and purslane extract was significantly increased (8% and 20%, respectively) as compared with that of onions produced from plants treated with the onion extract only or no treatment (p<0.05). However, there was no significant difference in the sugar contents of the onions produced from extract-treated and nonextract-treated plants. Postharvest, the content of inorganic components (phosphate, calcium, sulfuric acid, and manganese) was higher in soil treated with the onion extract than in soil treated with the onion and purslane extract and non-treated soil. It can be concluded that residues left after onion harvests and purslane extract can be used as natural and environmentally friendly materials for the cultivation of organic onions.

An Experimental Study on the Flexural Behavior of Slab Repaired and Reinforced with Strand and Polymer Mortar (강연선과 폴리머 모르타르에 의해 보수보강된 슬래브의 휨거동에 대한 실험적 고찰)

  • Yang Dong-Suk;Hwang Jeong-Ho;Park Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.171-177
    • /
    • 2005
  • Even though the cost associated with the repair and rehabilitation of existing structures are rapidly increasing, vast number of the repaired and rehabilitated structures do not function properly as expected during their remaining service lives. This paper focused on the flexural behavior of reinforced concrete slabs repaired and reinforced by PS strand and polymer mortar in the tension face. The slabs have the size of 700${\times}120{\times}$2200 m and 700${\times}120{\times}$1300 mm. Variables of experiment were space of strengthening, chipping, the number of strand, the kind of mortar in this experimental study. Attention is concentrated upon overall bending capacity, deflection, ductility and failure mode of repaired and reinforced slabs. Test results show that deflection of repaired and reinforced slabs reduced to approximately $40 \%$ comparison to standard slabs. Boundary cracking of chipping slab started ultimate load afterward. Concrete-mortar interface cracked 64.5 kN in repaired slab with AP mortar and 36.0 kN in repaired slab with general polymer mortar. Reinforcement effect increased with reducing space of strand. Also, Reinforcement effects are more by strand than by polymer mortar.

Influence of Deep Flooding on Rice Growth and Yield in Dry-seeded Paddy Field (벼 건답직파 재배시 심수관개가 생육과 수량에 미치는 영향)

  • 원종건;최충돈;이외현;김칠용;이상철
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.2
    • /
    • pp.166-172
    • /
    • 1997
  • This experiment was carried out to clarify the effect of the deep water irrigation on dry-seeded rice cultivation at the three different water managements-deep continuous flooding(DCF), water saving irrigation(WSI), ordinary irrigation(OI). The highest tillering numbers per $m^2$ of rice were 551, 466 and 455 in OI, WSI and DCF, respectively. The tillering number of rice plants were significantly reduced in DCF. Heading date was delayed and the total chlorophyll content in leaf after heading was higher in DCF than those in other irrigation methods. For the characteristics associated with lodging, the culm length in DCF was slightly elongated and the diameter of culm in DCF was thicker than that in WSI and OI. The breaking weight and bending moment in DCF also were higher than those in others. As the result, although the culm length in DCF was long, the lodging index was comparatively low. The panicle length in DCF was longer than in OI and WSI. The spikelet number per $m^2$ and 1,000-grain weight were the most in WSI, while panicle number, ripened grain ratio and grain weight were not significantly different. Longer panicle length and more spikelet number resulted in higher yielding capacity in DCF.

  • PDF