• 제목/요약/키워드: bending characteristics

검색결과 1,440건 처리시간 0.026초

마그네슘 합금 판재의 온간 V-굽힘에서 소재의 변형 및 보토밍 공정의 효과 분석 (Study on the Deformation Characteristics of AZ31B Sheets in V-bending and Effect of Bottoming Process)

  • 김현우;유제형;이창환
    • 소성∙가공
    • /
    • 제27권3호
    • /
    • pp.139-144
    • /
    • 2018
  • Many studies have been conducted on the process of forming magnesium alloy sheets to reduce the body weights of vehicles. Magnesium has a lower specific gravity than steel and also has a higher specific strength. Mg alloy sheets have low formability and a lot of springback due to their limited ductility and low young's modulus. As the temperature increases, the yield strength of the material decreases. Warm forming increases the formability and minimizes the springback of a material by heating it and the die to reduce the required load at forming. In this study, the temperature of the AZ31B sheet was controlled in order to reduce springback and increase formability. However, as the temperature increased, the deformation characteristics of the material changed and the radius of curvature of the material increased. The load and springback amount required for forming were analyzed according to the temperature and the bottoming force in the bending deformation.

연삭가공조건에 따른 티타늄 합금의 물성치 향상에 관한 연구 (A Study on the Improvement of Physical Properties for Titanium Alloy by the Grinding Conditions)

  • 김원일;이윤경;왕덕현;허순
    • 한국산업융합학회 논문집
    • /
    • 제4권3호
    • /
    • pp.237-242
    • /
    • 2001
  • Ti-6Al-4V alloy can be obtained the stability of organization and product treasure, the evaluation of the cutting ability and the mechanical characteristics after the heat treatment of annealing, solution and aging. The difficulty in machining titanium alloy is how treat the heat generated during the process. Because the heat conductivity of titanium alloy is regardfully low, the heat generated during grinding is accumulated in workpiece. and it causes the increasing of grinding wheel grits' wear and makes the ground surface rough. So, these characteristics in grinding of titanium alloy will change the mechanical properties of the titanium alloy. From this study. the mechanical characteristics of annealed one and solution and aging one treated Ti-6Al-4V alloy after grinding was concerned with checking out the bending strength and hardness. For the result, both of bending strength and hardness were increased at the burned area on the surface. Roughness value was remarkably high at the table speed of 10m/min.

  • PDF

세립분 함유량이 동결 사질토의 파괴특성에 미치는 영향 (Effects of Fine Contents on the Fracture Characteristics of Frozen Sand)

  • 황범식;조완제
    • 한국지반공학회논문집
    • /
    • 제36권3호
    • /
    • pp.25-36
    • /
    • 2020
  • 동토의 세립분 함유량에 따른 파괴특성을 파악하기 위해 -10℃의 온도에서 다양한 세립분 함유량과 초기 노치(notch)의 위치를 조정한 직사각형 공시체를 제작하여 Three-point bending 시험을 수행하였다. 시험결과를 바탕으로 동토의 mode I 파괴인성(fracture toughness)을 산정하였으며, 하중-변형 곡선의 최대점까지의 fracture energy를 산정하여 동토의 mixed-mode(mode I + II) 파괴특성을 파악하였다. 시험결과, 최대하중 및 mode I 파괴인성은 세립분 함유량 10%까지 증가하다가 15%에서 다시 감소하는 경향을 나타내었다. 또한, 노치의 위치가 공시체 중심에서 멀어질수록 mode II 하중의 증가로 인해 균열이 진행하는데 필요한 fracture enenrgy가 증가하는 것으로 나타났으며, 세립분 함유량이 증가할수록 mode II 하중의 증가비율 또한 증가하는 것으로 나타났다.

Biomechanical Testing of Anterior Cervical Spine Implants: Evaluation of Changes in Strength Characteristics and Metal Fatigue Resulting from Minimal Bending and Cyclic Loading

  • Kim, Sung-Bum;Bak, Koang-Hum;Cheong, Jin-Hwan;Kim, Jae-Min;Kim, Choong-Hyun;Oh, Seong-Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • 제37권3호
    • /
    • pp.217-222
    • /
    • 2005
  • Objective: To achieve optimal fit of implant, it is necessary to bend the implant during spine surgery. Bending procedure may decrease stiffness of plate especially made of titanium and stainless steel. Typically titanium suffers adverse effects including early crack propagation when it is bent. We investigate whether 6 degree bending of titanium plates would decrease the stiffness after full cyclic loading by comparing with non-bending titanium plates group. Methods: Authors experimented 40 titanium alloy plates of 57mm in length, manufactured by 5 different companies. Total 40 plates were divided into two groups (20 bent plates for experimental group and 20 non-bent plates for control group). Twenty plates of experimental group were bent to 6 degree with 3-point bending technique and verified with image analyzer. Using the electron microscope, we sought for a initial crack before and after 3-point bending. Mechanical testing by means of 6000 cyclic axial-compression loading of 35N in compression with moment arm of 35mm-1.1 Nm was conducted on each plate and followed by the electron microscopic examination to detect crack or fissure on plates. Results: The stiffness was decreased after 6000 cyclic loading, but there was no statistically significant difference in stiffness between experimental and control group. There was no evidence of change in grain structure on the electron microscopic magnification. Conclusion: The titanium cervical plates can be bent to 6 degree without any crack or weakness of plate. We also assume that minimal bending may increase the resistance to fatigue fracture in cervical flexion-extension movement.

다양한 형상비를 갖는 사각 CFRP 튜브의 굽힘 및 비틀림 특성 (Bending and Torsional Characteristics of Rectangular CFRP Tubes with Various Aspect Ratios)

  • 이용성;정성균
    • Composites Research
    • /
    • 제27권2호
    • /
    • pp.37-41
    • /
    • 2014
  • 섬유강화복합재료는 비강도와 비강성이 뛰어나 여러 분야에 걸쳐 사용량이 증가하고 있으며 자전거와 같은 스포츠 용품에도 사용량이 점점 증가하고 있다. 복합재료는 다양한 형상의 구조부품으로 만들어져 사용되고 있다. 특히 자전거 프레임의 일부에는 사각형 복합재 튜브 형태로 제작되어 사용되고 있으나 이에 관한 연구는 많지 않다. 사각 복합재 튜브의 경우에 모서리에 적절한 라운드 값을 주어 굽힘과 비틀림에 견디도록 설계된다. 본 연구에서는 모서리의 곡률반경이 R5, R10, R15인 세 개의 그룹에 가로-세로 1:1, 1:1.5, 1:2의 형상비를 갖는 아홉 종류의 사각 복합재 튜브를 제작하였다. 탄소섬유강화복합재료가 튜브제작에 사용되었으며 단면적은 모두 같도록 설계되었다. $[0/90/{\pm}45]s$으로 적층하여 제작한 사각 복합재 튜브에 굽힘과 비틀림 하중을 가하여 실험평가를 수행하였다. 실험결과 사각 복합재 튜브의 R 값과 형상비에 따라서 굽힘 및 비틀림 특성이 크게 다름을 알 수 있었다.

형상기억합금의 휨거동 및 교량변위제어장치적용 연구 (Bending behavior of shape memory alloy bar and its application of seismic restrainers for bridges)

  • 최은수;박주남;김학수;이도형
    • 한국지진공학회논문집
    • /
    • 제11권5호
    • /
    • pp.23-32
    • /
    • 2007
  • 본 논문은 형상기억합금 바의 휨 거동 특성 파악하기 위하여 여러 가지의 휨 거동 실험을 수행하였으며, 형상기억합금 바의 휨 거동분석을 통하여 지진 시에 적용 가능성을 규명하는데 목적이 있다. 이를 위해 단순 휨 및 이중 휨 실험을 재하속도 및 최대변위를 변수로 수행하였다. 힘-변위 곡선에서 추정한 재하 및 제하 시의 강성이 추정되었으며, 등가의 감쇠비도 각 실험결과에서 추정되었다. 단순 휨에서 형상기억합금 바는 32 mm 변위 이후에 강성증가현상을 나타냈으며, 이것은 SIM(Stress-Induced-Martensite) 현상에 의해서 발생하는 것으로 추정된다. 재하속도의 증가는 형상기억합금 휨 강성 증가에 영향을 주지 않는 것으로 나타났다. 이중 휨 거동에서 형상기억합금 바는 단순 휨에 비해 강성이 약 5배정도 크게 나타났으며, 감쇠비는 유사하게 나타났다. 휨 거동의 형상기억합금 바를 지진 변위 제어장치로 사용하여 3경간 단순지지 교량에 적용하여 지진해석을 수행하였다. 이러한 지진변위 제어장치는 매우 효과적인 것으로 나타났으며, 실용적인 것으로 판단된다. 본 논문의 의미는 형상기억합금 바의 휨 거동에 대한 기초 지식을 제공하는데 있다.

정적 하중하의 굽힘 압전 복합재료 작동기의 작동 성능 (Actuating Performance of a Bending Piezoelectric Composite Actuator with a Thin Sandwiched PZT Plate under Static Loads)

  • 우성충;박기훈;구남서
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1231-1236
    • /
    • 2007
  • This study presents the static and dynamic actuating performances of a bending piezoelectric actuator with a thin sandwiched PZT plate under a static load. The stored elastic energy within the actuators which occurs during a curing process is obtained through a flexural bending test. An actuating performance is evaluated in terms of an actuating displacement at the simply supported condition. The results reveal that an actuator that consists of a top layer having a high elastic modulus and a low coefficient of thermal expansion exhibits a better performance than the rest of actuators due to the formation of the large stored elastic energy within the actuator system. When actuators are excited at the alternating current voltage, the effect of PZT ceramic softening results in a slight reduction in the resonance frequency of each actuator as the applied electric field increases. It is thus suggested that the static and dynamic actuating characteristics of bending piezoelectric actuators with a thin sandwiched PZT plate should be simultaneously considered in controlling their performances.

  • PDF

COG 압착 공정에서의 Glass 휨 연구 (Investigation for glass warpage in the COG process)

  • 김병용;김종환;최성호;오용철;서대식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.300-301
    • /
    • 2006
  • We studied about new module technology to solve warpage problems that produce bending of cell in the LCD (Liquid crystal display). Characteristics of cell gap and glass bending of applying heat Panel's PAD part and cell at various temperature was investigated. When applies heat and compresses PAD party only in case of compressing COG(Chip on Glass), uniformity of cell gap that happen by glass bending by temperature of these compressing COG In the PAD party is decreased. However, in case of compress COG. glass bending of applying heat Panel's PAD part and cell at various temperature produced 20um. But, uniformity of cell gap was not decreased. Therefore, it is considered that applying heat Panel's PAD part and cell could decrease uniformity of cell gap and bending of glass.

  • PDF

파형 및 주파수해석에 근거한 굽힘 압전 복합재료 작동기 손상모드의 비파괴적 평가 (Nondestructive Evaluation of Damage Modes in a Bending Piezoelectric Composite Actuator Based on Waveform and Frequency Analyses)

  • 우성충;구남서
    • 대한기계학회논문집A
    • /
    • 제31권8호
    • /
    • pp.870-879
    • /
    • 2007
  • In this study, various damage modes in bending unimorph piezoelectric composite actuators with a thin sandwiched PZT plate during bending fracture tests have been evaluated by monitoring acoustic emission (AE) signals in terms of waveform and peak frequency as well as AE parameters. Three kinds of actuator specimens consisting of woven fabric fiber skin layers and a PZT ceramic core layer are loaded with a roller and an AE activity from the specimen is monitored during the entire loading using an AE transducer mounted on the specimen. AE characteristics from a monolithic PZT ceramic with a thickness of $250{\mu}m$ are examined first in order to distinguish different AE signals from various possible damage modes in piezoelectric composite actuators. Post-failure observations and stress analyses in the respective layers of the specimens are conducted to identify particular features in the acoustic emission signal that correspond to specific types of damage modes. As a result, the signal classification based on waveform and peak frequency analyses successfully describes the failure process of the bending piezoelectric composite actuator exhibiting diverse failure mechanisms. Furthermore, it is elucidated that when the PZT ceramic embedded actuators are loaded mechanical bending loads, the failure process of actuator specimens with different lay-up configurations is almost same irrespective of their lay-up configurations.

굽힘 압전 복합재료 작동기의 하중 특성 (Load Capability in a Bending Piezoelectric Composite Actuator with a Thin Sandwiched PZT Plate)

  • 우성충;구남서
    • 대한기계학회논문집A
    • /
    • 제31권8호
    • /
    • pp.880-888
    • /
    • 2007
  • This article describes the load capability of bending piezoelectric actuators with a thin sandwiched PZT plate in association with the stored elastic energy induced by an increased dome height after a curing process. The stored elastic energy within the actuators is obtained via a flexural mechanical bending test. The load capability is evaluated indirectly in terms of an actuating displacement with a load of mass at simply supported and fixed-free boundary conditions. Additionally, a free displacement under no load of mass is measured for a comparison with an actuating displacement. The results reveal that an actuator with a top layer having a high elastic modulus and a low coefficient of thermal expansion exhibits a better performance than the rest of actuators in terms of free displacement as well as actuating displacement due to the formation of the large stored elastic energy within the actuator system. When actuators are excited at AC voltage, the actuating displacement is rather higher than the free displacement for the same actuating conditions. In addition, the effect of PZT ceramic softening results in a slight reduction in the resonance frequency of each actuator as the applied electric field increases. It is thus suggested that the static and dynamic actuating characteristics of bending piezoelectric composite actuators with a thin sandwiched PZT plate should be simultaneously considered in controlling the performance.