• Title/Summary/Keyword: bending and buckling

Search Result 444, Processing Time 0.022 seconds

Cyclic Loading Tests for Prefabricated Composite Columns Using Steel Angle and Reinforcing Bar (PSRC 합성기둥의 반복가력 실험)

  • Hwang, Hyeon Jong;Eom, Tae Sung;Park, Hong Gun;Lee, Chang Nam;Kim, Hyoung Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.6
    • /
    • pp.635-647
    • /
    • 2013
  • PSRC composite column is a concrete encased steel angle column. In the PSRC composite column, the steel angles placed at the corner of the cross-section resists bending moment and compression load. In the present study, using the performance criteria in KBC 2009, cyclic lateral loading test was performed for PSRC columns to verify the seismic performance. The test parameters were the column type, the use of continuous hoop, and the use of studs for steel angle. 2/3 scale specimens of a conventional composite column and three PSRC columns were tested. The test results showed that the load-carrying capacity predicted by KBC 2009 correlated well with the test results. The specimens also exhibited good deformation and energy dissipation capacities. After concrete cover spalling under cyclic loading, the load-carrying capacity were decreased by buckling of longitudinal bars and steel angles. When continuous hoop was used, the deformability of the PSRC column was improved, preventing early buckling of the steel angles.

Experimental Study on Low Cyclic Loading Tests of Steel Plate Shear Walls with Multilayer Slits

  • Lu, Jinyu;Yu, Shunji;Qiao, Xudong;Li, Na
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1210-1218
    • /
    • 2018
  • A new type of earthquake-resisting element that consists of a steel plate shear wall with slits is introduced. The infill steel plate is divided into a series of vertical flexural links with vertical links. The steel plate shear walls absorb energy by means of in-plane bending deformation of the flexural links and the energy dissipation capacity of the plastic hinges formed at both ends of the flexural links when under lateral loads. In this paper, finite element analysis and experimental studies at low cyclic loadings were conducted on specimens with steel plate shear walls with multilayer slits. The effects caused by varied slit pattern in terms of slit design parameters on lateral stiffness, ultimate bearing capacity and hysteretic behavior of the shear walls were analyzed. Results showed that the failure mode of steel plate shear walls with a single-layer slit was more likely to be out-of-plane buckling of the flexural links. As a result, the lateral stiffness and the ultimate bearing capacity were relatively lower when the precondition of the total height of the vertical slits remained the same. Differently, the failure mode of steel plate shear walls with multilayer slits was prone to global buckling of the infill steel plates; more obvious tensile fields provided evidence to the fact of higher lateral stiffness and excellent ultimate bearing capacity. It was also concluded that multilayer specimens exhibited better energy dissipation capacity compared with single-layer plate shear walls.

A Study on Failure Mechanisms of Composite Tubes with Woven Fabric Carbon, Glass and Kevlar/epoxy Under Compressive Loadings (직조된 탄소, 유리 및 케블라 섬유 복합소재 튜브의 압축하중하에서 파손 메커니즘 분석 연구)

  • Kim, Jung-Seok;Yoon, Hyuk-Jin;Lee, Ho-Sun;Kwon, Tae-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.590-596
    • /
    • 2009
  • In this study, the failure modes and energy absorption characteristics of four different kinds of circular tubes made of carbon, glass, Kevlar and carbon-Kevlar hybrid fibres composites with epoxy resin have been evaluated. To achieve these goals, compressive tests were conducted for the tubes under 10mm/min loading speed. Based on the test results, the carbon/epoxy tube showed the best energy absorption capability, while carbon-Kevlar/epoxy tubes were worst. In the failure mode during crushing, both of the carbon/epoxy tubes and the glass/epoxy tubes were crushed by brittle fracturing mode. The Kevlar/epoxy tubes were collapsed by local buckling mode like steel, while the carbon-Kevlar hybrid tubes were collapsed by mixed mode of local buckling and lamina bending.

Experimental Study on Ultimate Shear Behaviour of Longitudinally Stiffened Plate Girder Web Panels (수평보강재가 있는 판형복부판의 극한전단거동에 관한 실험연구)

  • Lee, Myung Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.167-179
    • /
    • 1999
  • The thin web panels of plate girders often need to be reinforced with transverse stiffeners to increase the shear strength. Since early 1960s, extensive researches have been conducted on the ultimate shear strength of plate girder webs with transverse stiffeners. These results have been first adopted into AASHTO(1970) and British Standard(1983) Specifications for the determination of the ultimate shear strength of transversely stiffened web panels. Although the main purposes of reinforcing web panels with longitudinal stiffeners are to increase the buckling strength and to control the lateral deflections due to bending, it has been reported that the longitudinal stiffeners increase the shear strength. However lack of studies has kept the effects of the longitudinal stiffeners on the ultimate shear strength from the design of plate girder web panels. In the present study an experimental investigation is carried out in order to assess the increment of the ultimate shear strength of shear web panels due to the longitudinal stiffeners and the results are compared with the existing failure theories.

  • PDF

Compressive Behavior of H-section Brace Strengthened by Non-welded Cold-Formed Element (무용접 냉간성형 조립재로 보강한 H형강 가새의 압축거동)

  • Kim, Sun Hee;Kim, Do Bum;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.169-180
    • /
    • 2015
  • Recently, Seismic performance of the building built in the past is required to review, because the code for seismic design have been reinforced. In 2009, if the revised latest criteria of seismic design is applied, the majority the steel structure of the low-rise concentrically braced system is short of the seismic performance. Also, when the steel braces are subject to compressive load, which causes unstable behavior of the structure. In order to verify the compressive behavior of the reinforced braces, structural performance test was conducted with variables of slenderness ratio and the amount of reinforcement. Therefore, this study suggests restraining the bending buckling of slender H-shaped braces to resist compressive force. In order to verify the compressive behavior of the reinforced braces, structural performance test was conducted with variables of slenderness ratio and the amount of reinforcement.

A Study on the Numerical Analysis Methods for Predicting Strength Test Result of Box Girder under Bending Moment (휨 모멘트를 받는 박스거더 구조 강도 실험에 대한 수치해석 방법에 관한 연구)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.488-496
    • /
    • 2023
  • Ship and bridge structures are a type of long box-shaped structure, and resistance to vertical bending moment is a key factor in their structural design. In particular, because box girders are repeatedly exposed to irregular wave loads for a long time, the continuous collapse behavior of structural members must be accurately predicted. In this study, plastic collapse behavior, including buckling according to load changes of the box girder receiving pure bending moments, was analyzed using a numerical analysis method. The analysis targets were selected as three box girders used in the Gordo experiment. The cause of the difference was considered by comparing the results of the structural strength experiment with those of non-linear finite element analysis. This study proposed a combination of the entire and local sagging shape to reflect the effect of the initial sagging caused by welding heat that is inevitably used to manufacture carbon steel materials. The procedures reviewed in the study and the contents of the initial sagging configuration can be used as a good guide for analyzing the final strength of similar structures in the future.

Evaluation of Mechanical Joint Structural Performance through Actual Performance Testing of PC Connections (PC 접합부의 실물 성능실험을 통한 기계식이음 구조성능 평가)

  • Kim, Jae Young;Kim, Yong Nam;Seo, Min Jung;Kim, Beom Jin;Kim, Sung Jig;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.129-139
    • /
    • 2024
  • In this study, the SBC system, a new mechanical joint method, was developed to improve the constructability of precast concrete (PC) beam-column connections. The reliability of the finite element analysis model was verified through the comparison of experimental results and FEM analysis results. Recently, the intermediate moment frame, a seismic force resistance system, has served as a ramen structure that resists seismic force through beams and columns and has few load-bearing walls, so it is increasingly being applied to PC warehouses and PC factories with high loads and long spans. However, looking at the existing PC beam-column anchorage details, the wire, strand, and lower main bar are overlapped with the anchorage rebar at the end, so they do not satisfy the joint and anchorage requirements for reinforcing bars (KDS 41 17 00 9.3). Therefore, a mechanical joint method (SBC) was developed to meet the relevant standards and improve constructability. Tensile and bending experiments were conducted to examine structural performance, and a finite element analysis model was created. The load-displacement curve and failure pattern confirmed that both the experimental and analysis results were similar, and it was verified that a reliable finite element analysis model was built. In addition, bending tests showed that the larger the thickness of the bolt joint surface of the SBC, the better its structural performance. It was also determined that the system could improve energy dissipation ability and ductility through buckling and yielding occurring in the SBC.

Free Vibration Characteristics of 5 × 5 Spacer Grid Assembly Supporting the PWR Fuel Rod (경수로 연료봉을 지지하는 5×5 지지격자체의 자유진동특성)

  • 강흥석;윤경호;송기남;최명환
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.512-519
    • /
    • 2004
  • This paper described the free vibration characteristics of Optimized H Type (OHT) spacer grids (SG) supporting the PWR fuel rod. The vibration test and the finite element (FE) analysis are performed under the free boundary condition and the clamped at two points (or three points) in the bottom which is the same one as the experimental condition for the dummy rod continuously supported by spacer grids. A modal test is conducted by the impulse excitation method using an impulse hammer and an accelerometer, and the TDAS module of the I-DEAS software is used to acquire and analyze the sensor signals. The softwares related to the FE analysis are the I-DEAS for the geometrical shape modeling and meshing, and the ABAQUS for solving. The fundamental frequency of the OHT SG by experiment under a clamped condition at two points is 175.18 Hz, and shows a bending mode. We think there is no resonance between the fuel rod and the SG because the SG's frequency is higher than that of the fuel rod existing in the range from 30 to 120 Hz. The fundamental frequency of the SG under the free boundary condition is 349.2 Hz showing a bending mode, and the results between the test and the analysis have a good agreement with maximum 7 % in error It is also found that the FE analysis model of the OHT SGs to analyze an impact, a buckling and vibration et al. has been generated with reliability.

Buckling Analysis of Corrugated Board using Finite Element Method (유한요소법에 의한 Corrugated Board의 휨 발란스 해석)

  • 박종민
    • Journal of Biosystems Engineering
    • /
    • v.28 no.2
    • /
    • pp.127-136
    • /
    • 2003
  • The top-to-bottom compression strength of corrugated board box is the most important mode of loading during it's no, and it depends largely on the edgewise compression strength of the corrugated board in the cross-machine direction and to a considerable extent on the flexural stiffness in both principal directions (CD; cross-machine direction, MD; machine direction) of the corrugated board. Corrugated board is a sandwich structure with an orthotropic property. The purpose of this study was to elucidate the principal design parameters for board combination of corrugated board from the viewpoint of bending strength through the finite element analysis [FEA] fur the various corrugated board. In general, the flexural stiffness [FS] in the MD was 2-3 times larger than that in the CD, and the effect of liner for the FS of corrugated board was much bigger than that of corrugating medium. The flexural stiffness index [FSI] was high when the stiffness of liner was in the order of inner, outer, and middle liner in double-wall corrugated board [DW], and the effect of the stiffness arrangement or itself reinforcement of corrugating medium on the FSI was not high. In single-wall corrugated board [SW] with DW. the variation of FSI with itself stiffness reinforcement of liner was much bigger than that with stiffness arrangement of liner. The highest FSI was at the ratio of about 2:1:2 for basis weight distribution of outer, middle, and inner liner if the stiffness of liner and total basis weight of corrugated board were equal in DW Secondarily. basis weight was in the order of inner, outer, and middle liner. However, the variation of FSI with basis weight distribution between liner and corrugating medium was much bigger than that with itself basis weight distribution ratio of liner and corrugating medium respectively in both DW and SW. md the FSI was high as more total basis weight was divided into liner. These phenomena fur board combination of corrugated board based on the FEA were well verified by experimental investigation.

Acoustic Emission Characteristics and Fracture Behaviors of GFRP-Aluminum Honeycomb Hybrid Laminates under Compressive and Bending Loads (GFRP-알루미늄 하니컴 하이브리드 적층판의 압축 및 굽힘 파괴거동과 음향방출해석)

  • Lee, Ki-Ho;Gu, Ja-Uk;Choi, Nak-Sam
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.23-31
    • /
    • 2009
  • This paper investigated acoustic emission (AE) characteristics in association with various fracture processes of glass fiber reinforced plastic skin/ aluminum honeycomb core (GF-AH) hybrid composites under compressive and bending loads. Various failure modes such as skin layer fracture, skin/core interfacial fracture, and local plastic yield buckling and cell wall adhesive fracture occurring in the honeycomb cell wall were classified through the fracture identification in association with the AE frequency and amplitude analysis. The distribution of the event-rate in which it has a high amplitude showed a procedure of cell wall adhesive fracture, skin/core interfacial debonding and fiber breakage, whereas distribution of different peak frequencies indicated the plastic deformation of aluminum cell wall and the friction between honeycomb walls. Consequently, the fracture behaviors of GF-AH hybrid composites could be characterized through a nondestructive evaluation employing the AE technique.