• Title/Summary/Keyword: bending actuator

Search Result 132, Processing Time 0.027 seconds

Development of an AFM-Based System for Nano In-Process Measurement of Defects on Machined Surfaces (가공면미세결함의 나노 인프로세스 측정을 위한 AFM시스템의 개발)

  • Gwon, Hyeon-Gyu;Choe, Seong-Dae;Park, Mu-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.537-543
    • /
    • 2002
  • This paper examines a new in-process measurement system for the measurement of micro-defects on the surfaces of brittle materials by using the AFM (Atomic Force Microscopy). A new AFM scanning stage that can also perform nano-scale bending of the sample was developed by adding a bending unit to a commercially available AFM scanner. The bending unit consists of a PZT actuator and sample holder, and can perform static and cyclic three-point bending. The true bending displacement of the bending unit is approximately 1.8mm when 80 volts are applied to the PZT actuator. The frequency response of the bending unit and the stress on the sample were also analyzed, both theoretically and experimentally. Potential surface defects of the sample were successfully detected by this measurement system. It was confirmed that the number of micro-defects on a scratched surface increases when the surface is subjected to a cyclic bending load.

Pre-shaping of ionic polymer metal composite actuators by heat treatment and characterization (이온성 고분자 금속 복합물(IPMC) 액추에이터의 열처리에 의한 성형 및 특성분석)

  • Park, Shin-Ho;Kim, Dong-Ik;Park, Man-Jun;Lee, Seung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.353-358
    • /
    • 2009
  • Ionic polymer metal composite(IPMC) has been used as a promising material for various actuator applications. The IPMC actuator is difficult to be fabricated with complicated 3-dimensional shape. We propose a simple heat treatment process that can fabricate IPMC actuator with various shapes. Experimental results show the pre-shaped IPMC actuator by heat treatment does not show any degradation of its actuation abilities such as bending displacement, generation force and reliability in bending motion.

Electric Fatigue Behavior of a Bending Piezoelectric Composite Actuator (굽힘 압전 복합재료 작동기의 전기적 피로 거동)

  • Woo, Sung-Choong;Goo, Nam-Seo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.362-367
    • /
    • 2008
  • In the present work, we address electric fatigue behavior in bending piezoelectric actuators using an acoustic emission technique. Electric cyclic fatigue tests have been performed up to ten million cycles on the fabricated specimens. To confirm the fatigue damage onset and its pathway, the source location and distributions of the AE behavior in terms of count rate are analyzed over the fatigue range. It is concluded that electric cyclic loading leads to fatigue damages such as transgranular damages and intergranular cracking in the surface of the PZT ceramic layer, and intergranular cracking even develops into the PZT inner layer, thereby degrading the displacement performance. The electric-induced fatigue behavior seems to show not a continuous process but a step-by-step process because of the brittleness of PZT ceramic. Nevertheless, this fatigue damage and cracking do not cause the final failure of the bending piezoelectric actuator loaded up to 107 cycles. Investigations of the AE behavior and the linear AE source location reveal that the onset time of the fatigue damage varies considerably depending on the existence of a glass-epoxy protecting layer.

  • PDF

Preparation and Characterization of Electro-Active IPMC(Ion-exchange Polymer Metal Composite) Actuator (전기활성 IPMC(ion-exchange Polymer Metal Composite) 구동기 제조 및 구동특성 연구)

  • 이준호;이두성;김홍경;이영관;최혁렬;김훈모;전재욱;탁용석;남재도
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.105-112
    • /
    • 2002
  • The low actuation voltage and quick bending response of IPMC(ion-exchange polymer metal composite) are considered attractive for the construction of various types of actuators. In this study, in order to develop a new type actuators by using the IPMC platinum electrode of IPMC are fabricated by using electroless impregnation-reduction method plating. As the platinum-plating times are increased, IPMC performance was improved in terms of bending displacement and force due to the enhanced surface conductivity. In addition, we investigated the basic actuation characteristics of resonance frequency and actuator length as well as the effect of water uptake and ion mobility. Using the classical laminate theory(CLT), a modeling methodology was developed to predict the deformation, bending moment, and residual stress distribution of anisotropic IPMC thin plates. In this modeling methodology, the internal stress evolved by the unsymmetric distribution of water inside IPMC was quantitatively calculated and subsequently the bending moment and the curvature were estimated for various geometry of IPMC actuator.

Behavior of a Shape Memory Alloy Actuator with Composite Strip and Spring (복합재료 스트립과 스프링을 갖는 형상기억합금 작동기의 거동)

  • Heo, Seok;Hwang, Do-Yeon;Choi, Jae-Won;Park, Hoon-Cheol;Goo, Nam-Seo
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.37-42
    • /
    • 2009
  • This paper presents an experimental approach to design a bending-type actuator by using a shape memory alloy wire (SMA), composite strip, and spring. The SMA wire is attached to two edges of the bent strip to apply pre-stress to the SMA wire. The spring is used to provide recovery force right after actuation of the SMA wire. To investigate thermo-mechanical characteristics of the SMA wire, a series of DSC tests have been conducted and tensile tests under various levels of pre-stress and input power have been performed. Based on the measured properties of the SMA wire, bending-type actuators are designed and tested for different combination of strip, number of springs, and input power. It has been found that a bending-type actuator with a proper combination shows fast actuation performance and low power consumption.

Theoretical Modeling and Dynamic Characteristics of a Cantilever IPMC Actuator (외팔보형 IPMC 구동기의 이론적 모델링과 구동특성)

  • Han, Dae-Woong;Lee, Seung-Yop;Cho, Sang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1521-1526
    • /
    • 2008
  • IPMC(Ionic Polymer-Metal Comosite) exhibits large deformation, having great attention in many application fields. It generates bending moment by ion exchange polymer film. It can be quickly bended by the applied voltage across the plated electrode of the polymer film. In the present paper, we derive the theoretical modeling and dynamic analysis of bending motions of IPMC actuators using the Euler-Bernoulli beam theory. The theoretical model of a cantilever IPMC actuator estimates the moment produced by the applied voltage. The dynamic characteristics, including natural frequencies and frequency response, are calculated by the theoretical model, and they are compared with the experimental results and finite element analysis. It is shown that the mathematical modeling allows precise estimation to the voltage-driven motion of the cantilever IPMC in air.

  • PDF

Damage Mechanisms of a Piezoelectric Actuator under Electric Fatigue Loading (전기적 피로하중을 받는 압전 작동기의 손상 메커니즘)

  • Woo, Sung-Choong;Goo, Nam-Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.856-865
    • /
    • 2008
  • Damage mechanisms in bending piezoelectric actuators under electric fatigue loading are addressed in this work with the aid of an acoustic emission (AE) technique. Electric cyclic fatigue tests have been performed up to $10^7$ cycles on the fabricated bending piezoelectric actuators. An applied electric loading range is from -6 kV/cm to +6 kV/cm, which is below the coercive field strength of the PZT ceramic. To confirm the fatigue damage onset and its pathway, the source location and distributions of the AE behavior in terms of count rate and amplitude are analyzed over the fatigue range. It is concluded that electric cyclic loading leads to fatigue damages such as transgranular damages and intergranular cracking in the surface of the PZT ceramic layer, and intergranular cracking even develops into the PZ inner layer, thereby degrading the displacement performance. However, this fatigue damage and cracking do not cause the final failure of the bending piezoelectric actuator loaded up to $10^7$ cycles. Investigations of the AE behavior and the linear AE source location reveal that the onset time of the fatigue damage varies considerably depending on the existence of a glass-epoxy protecting layer.

Prediction of Gear Bending Fatigue Life of Electro-mechanical Actuator for Aircraft Through Finite Element Analysis

  • Kim, Taehyung;Seok, Taehyeon;Kwon, Soon-hyeong;Lee, Byung-ho;Kwon, Byung-gi;Kwon, Jun-yong;Cheong, Seong-kyun
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.58-67
    • /
    • 2020
  • In this study, finite element fatigue analysis combined with a fatigue correlation factor is proposed to predict the bending fatigue life of a gear in an electro-mechanical aircraft actuator. First, stress-life curves are obtained for the gear material via a round bar fatigue test. Subsequently, stochastic stress-life (P-S-N) curves are derived for 50% and 1% failure probabilities, separately. The curves are applied to the fatigue analysis model of a single gear tooth, and the effect of the fatigue correction factor is analyzed. The analytical P-S-N curves reflecting the fatigue correction factor matched the experimental data. This shows that the analytical fatigue life is reliable and that the analysis technique is effective.

Manufacturing 2DOF Inflatable Joint Actuator by Pneumatic Control (공압제어를 통한 2DOF 팽창식 관절 액추에이터 제작)

  • Oh, Namsoo;Lee, Haneol;Rodrigue, Hugo
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.92-96
    • /
    • 2018
  • In this paper, a soft robotic arm which can prevent impact injury during human-robot interaction is introduced. Two degrees of freedom joint are required to realize free movement of the robotic arm. A robotic joint concept with a single degree of freedom is presented using simple inflatable elements, and then extended to form a robotic joint with two degrees of freedom joint using similar manufacturing methods. The robotic joint with a single degree of freedom has a joint angle of $0^{\circ}$ bending angle when both chamber are inflated at equal pressures and maximum bending angles of $28.4^{\circ}$ and $27.1^{\circ}$ when a single chamber if inflated. The robotic joint with two degrees of freedom also has a bending angle of $0^{\circ}$ in both direction when all three chambers are inflated at equal pressures. When either one or two chambers were pressurized, the robotic joint performed bending towards the uninflated chambers.

Bending Displace Improvement of Electro-active Paper Using Conductive Polyaniline Coating (전도성 폴리아닐린(Polyaniline)을 이용한 전기작동 종이(EAPap)의 굽힘변형 개선)

  • Kim, Joo-Hyung;Yun, Sung-Yuel;Kim, Jae-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1310-1316
    • /
    • 2008
  • Bi-layer and tri-layer structures of electro-active paper(EAPap) using conductive polyaniline(PANI) coating were investigated to improve bending displacement of cellulose EAPap. Two different counter ions, perchlorate($CIO_4^-$) and tetrafluoroborate($BF_4^-$), are used as dopant ions in the PANI processing. The actuation performances of hi-layer and tri-layer structure are evaluated in terms of tip displacement, blocked force, strain energy density and power output density. The actuation performance of the tri-layer actuator was better than the hi-layer structure, and the maximum displacement and blocked force of tri-layer $CIO_4^-$ doped-PANI-EAPap were 13.2 mm and 0.15 mN, respectively. Also the power output of the actuator is similar to the required power of biological muscle application.